Refine Your Search



Search Results

Technical Paper

Blast Protection Design of a Military Vehicle System Using a Magic Cube Approach

A Magic Cube (MQ) approach for crashworthiness design has been proposed in previous research [1]. The purpose of this paper is to extend the MQ approach to the blast protection design of a military vehicle system. By applying the Space Decompositions and Target Cascading processes of the MQ approach, three subsystem design problems are identified to systematize the blast protection design problem of a military vehicle. These three subsystems, including seat structure, restraint system, and under-body armor structure, are most influential to the overall blast-protective design target. The effects of a driver seat subsystem design and restraint-system subsystem design on system blast protection are investigated, along with a focused study on the under-body blast-protective structure design problem.
Journal Article

Characterization of the Lateral Control Performance by Human Drivers on Highways

The characterization of human drivers' performance is of great significance for highway design, driver state monitoring, and the development of automotive active safety systems. Many earlier studies are restricted by experimental scope, the number and diversity of human subjects, and the accuracy and extent of measured variables. In this work, driver lateral control performance on limited-access highways is quantified by utilizing a comprehensive naturalistic driving database, with the emphasis on measures of vehicle lateral position and time to lane crossing (TLC). Normative values at various speed ranges are reported. The results represent a statistical view of baseline on-road naturalistic driving performance, and can be used for quantitative studies such as driver impairment and alertness monitoring, the triggering of lane departure warning systems, and highway design.
Journal Article

Uncertainty Propagation in Multi-Disciplinary Design Optimization of Undersea Vehicles

In this paper the development of statistical metamodels and statistical fast running models is presented first. They are utilized for propagating uncertainties in a multi-discipline design optimization process. Two main types of uncertainty can be considered in this manner: uncertainty due to variability in design variables or in random parameters; uncertainty due to the utilization of metamodels instead of the actual simulation models during the optimization process. The value of the new developments and their engagement in multi-discipline design optimization is demonstrated through a case study. An underwater vehicle is designed under four different disciplines, namely, noise radiation, self-noise due to TBL excitation, dynamic response due to propulsion impact loads, and response to an underwater detonation.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Traumatopsy: A Unique Crash Reconstruction Method for Determining Injury Patterns in Fatal Motor Vehicle Crashes

BACKGROUND: Detailed fatal injury data following fatal motor vehicle crashes (MVC) are necessary to improve occupant safety and promote injury prevention. Autopsy remains the principle source of detailed fatal injury data. However, procedure rates are declining due to a range of technical, ethical and religious concerns. Postmortem computed tomography (PMCT) is a potential alternative or adjunct to autopsy which is increasingly used by forensic researchers. However, there are only limited data regarding the utility of PMCT for analysis of fatal MVC injuries. METHODS: We performed whole body PMCT, autopsy and complete crash reconstruction on 3 subjects fatally injured in MVC in a single county in Michigan. All injuries detected by either PMCT or autopsy were coded using the Abbreviated Injury Scale (AIS). Severe injuries, defined as AIS 3 or higher (AIS 3+), were tallied for each forensic procedure to allow a comparison of relative diagnostic performance.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

Minimizing Read-Through When Creating a Mechanical Score in a Polymer Skin

When weakening a skin/foam bilaminate by mechanically scoring the polymer skin on its back surface, where it is bonded to the foam, the weakness of the bilaminate is determined by the depth of the score groove. The deeper the groove, the weaker the bilaminate. But also, the deeper the groove, the greater the tendency for read-through. Read-through is seeing on the front surface the location of this groove that was created on the back surface. Scored skins, after mounting flat on a glass plate, were viewed with an optical interferometer. It was found that the topographical feature that constituted read-through was a valley. A Silly Putty model was used to better understand the strains induced by mechanical scoring and this understanding was used to identify factors affecting read-through. Blade thickness and the ultimate elongation of the skin material were identified as factors. This work is applicable to certain types of passenger-side seamless airbag systems, for example.
Technical Paper

Software Integration for Simulation-Based Analysis and Robust Design Automation of HMMWV Rollover Behavior

A multi-body dynamics model of the U.S. Army3s High Mobility Multi-purpose Wheeled Vehicle (HMMWV) has been created using commercial software (ADAMS) to simulate and analyze the vehicle3s rollover behavior. However, manual operation of such simulation and analysis for design purposes is prohibitively expensive and time consuming, limiting the engineers3 ability to utilize the model fully and extract from it useful design information in a timely, cost-effective manner. To address this challenge, a commercial system integration and optimization software (OPTIMUS) is utilized in order to automate the simulation processes and to enable the more complex uncertainty-based analysis of the HMMWV rollover behavior under a variety of external conditions. Challenges involved in integrating the software are highlighted and remedies are discussed. Rollover analysis results from using the integrated model and automated simulation are also presented.
Technical Paper

Intrusion in Side Impact Crashes

Half of the car occupant deaths involved in two-vehicle crashes results from side impact collisions. In an attempt to better understand the role that vehicle mass plays in crashes and injury causation, detailed information from the NASS CDS database on injury source was distributed in three classes: contact with intrusion, contact without intrusion, and restrained acceleration or non-contact. We compared these distributions for belted drivers in side verses frontal crashes. When looking at the type of striking, or bullet, vehicle in near-side impacts, we found that intrusion injuries are more prevalent in cars hit by SUVs and pickups than by other cars. We also looked at the body region injured verses the type of striking vehicle and found head injuries to be slightly more prevalent when the striking vehicle is an SUV or pick-up. Data from the University of Michigan CIREN case studies on side impacts are presented and are consistent with the NASS CDS data.
Technical Paper

Innovative Composite Structure Design for Blast Protection

An advanced design methodology is developed for innovative composite structure concepts which can be used in the Army's future ground vehicle systems to protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major technologies: a newly developed landmine-soil-composite interaction model; an advanced design methodology, called Function-Oriented Material Design (FOMD); and a novel patent-pending composite material concept, called BTR (Biomimetic Tendon-Reinforced) material. Example results include numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and prototyping of blast-protective composite structures for a wide range of damage scenarios in various blast events.
Technical Paper

Improved Positioning Procedures for 6YO and 10YO ATDs Based on Child Occupant Postures

The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present study applied the same methodology to the development of positioning procedures for ATDs representing six-year-old and ten-year-old children sitting on vehicle seats and belt-positioning boosters. Data from a recent study of 62 children with body mass from 18 to 45 kg were analyzed to quantify hip and head locations and pelvis and head angles for both sitter-selected and standardized postures. In the present study, the 6YO and 10YO Hybrid-III ATDs were installed using FMVSS 213 procedures in six test conditions used previously with children.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
Technical Paper

Structural and Material Changes in the Aging Thorax and Their Role in Crash Protection for Older Occupants

The human body undergoes a variety of changes as it ages through adulthood. These include both morphological (structural) changes (e.g., increased thoracic kyphosis) and material changes (e.g., osteoporosis). The purpose of this study is to evaluate structural changes that occur in the aging bony thorax and to assess the importance of these changes relative to the well-established material changes. The study involved two primary components. First, full-thorax computed tomography (CT) scans of 161 patients, age 18 to 89 years, were analyzed to quantify the angle of the ribs in the sagittal plane. A significant association between the angle of the ribs and age was identified, with the ribs becoming more perpendicular to the spine as age increased (0.08 degrees/year, p=0.012). Next, a finite element model of the thorax was used to evaluate the importance of this rib angle change relative to other factors associated with aging.
Technical Paper

Predicting Foot Positions for Manual Materials Handling Tasks

For many industrial tasks (push, pull, lift, carry, etc.), restrictions on grip locations and visibility constrain the hand and head positions and help to define feasible postures. In contrast, foot locations are often minimally constrained and an ergonomics analyst can choose several different stances in selecting a posture to analyze. Also, because stance can be a critical determinant of a biomechanical assessment of the work posture, the lack of a valid method for placing the feet of a manikin with respect to the task compromises the accuracy of the analysis. To address this issue, foot locations and orientations were captured in a laboratory study of sagittal plane and asymmetric manual load transfers. A pilot study with four volunteers of varying anthropometry approached a load located on one of three shelves and transferred the load to one of six shelves.
Technical Paper

Balance Maintenance during Seated Reaches of People with Spinal Cord Injury

In many task analyses using digital human figure models, only the terminal or apparently most stressful posture is analyzed. For reaches from a seated position, this is generally the posture with the hand or hands at the target. However, depending on the characteristics of the tasks and the people performing them, analyzing only the terminal posture could be misleading. This possibility was examined using data from a study of the reaching behavior of people with spinal cord injury. Participants performed two-handed forward reaching tasks. These reaches were to three targets located in the sagittal plane. The terminal postures did not differ significantly between those with spinal cord injury and those without. However, motion analysis demonstrated that they employed distinct strategies, particularly in the initial phase of motion.
Technical Paper

Design Optimization of Vehicle Structures for Crashworthiness via Equivalent Mechanism Approximations

A new method for crashworthiness optimization of vehicle structures is presented, where an early design exploration is done by the optimization of an equivalent mechanism approximating a vehicle structure. An equivalent mechanism (EM) is a network of rigid bodies connected by prismatic and revolute joints with special nonlinear springs. These springs are designed to mimic the force-displacement characteristics of thin-walled beams often found in the vehicle body structures. A computer software is implemented that allows the designer to quickly construct an equivalent mechanism model of a structure using a graphical user interface (GUI) to optimize the model for given objectives prior to final tuning using finite element (FE) models. A case study of a vehicle front substructure consisting of mid and lower rails is presented, which demonstrates that the new approach can obtain a better design with less computational resources than the direct optimization of a FE model.
Technical Paper

Detection of Ice on Aircraft Tail Surfaces

A method is presented here that detects aircraft tail surface icing that might normally be unobserved by the flight crew. Such icing can be detected through the action of highly computationally efficient signal processing of existing sensor signals using a so-called failure detection filter (FDF). The FDF creates a unique output signature permitting relatively early detection of tail surface icing. The FDF incorporates a stable state estimator from which the icing signature is created. This estimator is robust to analytical modeling errors or uncertainties, and to process noise (e.g. turbulence). Excellent performance of the method is demonstrated via simulation.
Technical Paper

Experimental Testing and Mathematical Modeling of the Interconnected Hydragas Suspension System

The Moulton Hydragas suspension system improves small car ride quality by interconnecting the front and rear wheel on each side of the vehicle via a hydraulic fluid pipe between the front and rear dampers. A Hydragas system from a Rover Group MGF sports car was statically and dynamically tested to generate stiffness and damping coefficient matrices. The goal was to develop the simplest possible model of the system for use in ride quality studies. A linear model showed reasonable accuracy over restricted frequency ranges. A second model used bilinear spring and damping constants, and was more accurate for predicting force at both the front and rear units for frequencies from 1 to 8 Hz. The Hydragas system static stiffness parameters, when used in the model, caused peak force underprediction in the jounce direction. The bilinear model required increased jounce stiffness to account for hysteresis in the rubber elements of the system, and dynamic fluid flow phenomena.
Technical Paper

Modeling Variability in Reaching Motions

Motion prediction models may give the average reach for an individual of specified characteristics. The actual reach will vary from this reach in a manner that may depend on both systematic and random factors. We describe a modeling approach that incorporates the variability within the reaches of a given subject and that between subjects. This information is useful to designers in investigating phenomena that may not occur during the average reach but may occur during variants such as collision with an obstacle or injury due to over-exertion.
Technical Paper

Rollover Propensity Evaluation of an SUV Equipped with a TRW VSC System

In this paper, a simulation-based dynamic rollover evaluation procedure is described. This work is based on the worst-case methodology developed at the University of Michigan, and is the result of a collaborated research project between the University of Michigan and TRW Inc. The target vehicle studied in this paper is a large production volume SUV. This vehicle is equipped with a production-intent TRW Vehicle Stability Control (VSC) system. The main goals of this paper are to (i) study the rollover propensity of this SUV, as influenced by vehicle and environment parameters such as vehicle speed, road condition, etc.; and (ii) investigate whether, and by how much, does the VSC system influence the rollover propensity of this SUV. The modeling, evaluation procedure, and preliminary evaluation results are reported.