Refine Your Search

Topic

Author

Search Results

Technical Paper

Fuel Film Temperature and Thickness Measurements on the Piston Crown of a Direct-Injection Spark-Ignition Engine

2005-04-11
2005-01-0649
Fuel film temperature and thickness were measured on the piston crown of a DISI engine under both motored and fired conditions using the fiber-based laser-induced fluorescence method wherein a single fiber delivers the excitation light and collects the fluorescence. The fibers were installed in the piston crown of a Bowditch-type optical engine and exited via the mirror passage. The fuel used for the fuel film temperature measurement was a 2×10-6 M solution of BTBP in isooctane. The ratio of the fluorescence intensity at 515 to that at 532 nm was found to be directly, but not linearly, related to temperature when excited at 488 nm. Effects related to the solvent, solution aging and bleaching were investigated. The measured fuel film temperature was found to closely follow the piston crown metal temperature, which was measured with a thermocouple.
Technical Paper

Gas Efficient Liquid Atomization Using Micro-Machined Spray Nozzles

1996-02-01
960859
Improved atomization is important in fuel injection applications since atomization influences fuel-air mixing and vaporization rates. The present paper explores the use of low pressure gas/air injection and methods to achieve a dispersed two-phase flow to enhance the atomization process. Gas-driven twin-fluid atomization has been achieved by combining X-ray lithographic/micro-machining technology to mechanically disperse a driving gas into a liquid to be sprayed. This technique forces the gas through a designed pattern of micron sized holes thereby yielding a field of micro-bubbles immediately upstream of the < I mm. diameter discharge orifice. Precise control of both uniformity of hole diameter and inter-hole spacing is critical to producing a well dispersed bubbly flow. The results show that the method of gas injection influences the liquid breakup process. Results are given for steady-flow atomization with low pressure injection into ambient air.
Technical Paper

Heat Transfer Measurements in a Motored Engine

1989-02-01
890319
A set of experiments has been performed on a motored four stroke engine measuring the gas phase thermal boundary layer profile adjacent to the cylinder head using speckle interferometry. Speckle interferometry is an optical technique which allows full field, line of sight averaged optical phase shift measurements. These optical phase shift measurements may be interpreted as local temperature values for planar or axisymmetric geometries with ideal gases. For this set of experiments, a small (20 mm diameter) portion of the cylinder head was raised 2 mm above the rest of the surface and used as a test surface. The experiments were performed at two engine speeds, 300 and 750 RPM and at low and high intake swirl levels. Interferograms were obtained at 10 crank angle degree intervals from 70° before top dead center of compression to 60° after top dead center of compression.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Technical Paper

High-efficiency NOx Trap Catalyst with Highly Dispersed Precious Metal for Low Precious Metal Loading

2012-04-16
2012-01-1246
This paper describes a newly developed NOx trap catalyst that achieves cleaner exhaust gas using much smaller quantities of precious metals. The precious metal loading of this NOx trap catalyst has been halved by developing a technique for inhibiting precious metal sintering even under exposure to high temperature exhaust gas and a trap material with improved catalyst functions at low temperature. This NOx trap catalyst is used on the Nissan X-TRAIL fitted with a diesel engine, which was the first vehicle to comply with Japan's Post New Long term Exhaust Emission Regulations.
Technical Paper

In-Cylinder Mixing Rate Measurements and CFD Analyses

1999-03-01
1999-01-1110
Gas-phase in-cylinder mixing was examined by two different methods. The first method for observing mixing involved planar Mie scattering measurements of the instantaneous number density of silicon oil droplets which were introduced to the in-cylinder flow. The local value of the number density was assumed to be representative of the local gas concentration. Because the objective was to observe the rate in which gas concentration gradients change, to provide gradients in number density, droplets were admitted into the engine through only one of the two intake ports. Air only flowed through the other port. Three different techniques were used in analyzing the droplet images to determine the spatially dependent particle number density. Direct counting, a filtering technique, and autocorrelation were used and compared. Further, numerical experiments were performed with the autocorrelation method to check its effectiveness for determination of particle number density.
Journal Article

Influence of the Coil Pitch and the Slot/Pole Number Combination upon the Performance of Permanent Magnet Motors

2012-04-16
2012-01-0336
This paper presents a mathematical investigation of the influence of the slot/pole number combination on the iron loss of permanent magnet (PM) motors. A simplified electromagnetic model of PM motors was used to develop a mathematical method of evaluating iron loss for any combination of slots and pole pairs. An investigation of the magnetomotive force distribution of stator teeth and its expression as a complex Fourier series expansion revealed that the coordinate system can be easily transformed, thereby enabling rotor iron loss to be calculated. A core factor was defined on the basis of the calculated iron losses and a map of slot/pole number combinations was created. Several promising combinations were selected from the map and their respective advantages and disadvantages were identified. A new promising combination was found featuring windings with a coil pitch of two slots.
Technical Paper

Intake Valve Flow Measurements Using PIV

1993-10-01
932700
Intake valve flow patterns have been measured quantitatively using particle image velocimetry (PIV) for a commercial 4-valve diesel cylinder head and valve system. The measurements have been made for low (600 engine RPM) and higher (1000 engine RPM) speeds, and at several planes in the valve curtain area. The measurements involve double exposure photography of laser light scattered by seed particles (≅1 μm) from a laser light sheet (≅ 0.5 mm by 50 mm) through an imaging system onto silver halide film. Subsequent processing produces the local particle displacement between the two exposures. Combined with the known time interval between exposures, the displacement information can produce velocity vectors at many locations in the field of view. The results of the experiments are shown as vector plots for each operating condition. In the plane of the illuminating laser sheet, velocity vectors representing local gas velocity are produced.
Journal Article

Internal Residual Stress Measurement of Aluminum Alloy Castings Using Neutron Diffraction

2012-04-16
2012-01-0549
When designing engine parts of motor vehicles, it is important to evaluate internal residual stresses that cause crack growth and influence the strength of parts. Internal stresses can be measured nondestructively by the neutron diffraction method. However, it is difficult to apply this method to aluminum alloy castings because they consist of coarse crystal grains. As for cylinder heads, the grain size ranges up to approximately 400 μm and there are few grains contributing to intensity of diffraction in each gauge volume. In the case of X-ray diffraction, "the oscillation method" has been employed for materials with coarse grains. In this study, the applicability of the oscillation method to aluminum alloy castings was investigated with the aim of establishing a method of measuring internal stresses and strains. A related objective was to determine the accuracy of stresses.
Technical Paper

Investigation of Augmented Mixing Effects on Direct-Injection Stratified Combustion

2001-09-24
2001-01-3670
The effects of augmented mixing through the use of an auxiliary gas injection (AGI) were investigated in a direct-injection gasoline engine operated at a 22:1 overall air-fuel ratio, but with retarded injection timing such that the combustion was occurring in a locally rich mixture as evident by the elevated CO emissions. Two AGI gas compositions, nitrogen and air, were utilized, the gas supply temperature was ambient, and a wide range of AGI timings were investigated. The injected mass was less than 10% of the total chamber mass. The injection of nitrogen during the latter portion of the heat release phase resulted in a 25% reduction in the CO emissions. This reduction is considered to be the result of the increased mixing rate of the rich combustion products with the available excess air during a time when the temperatures are high enough to promote rapid oxidation.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Measurement and Modeling of Thermal Flows in an Air-Cooled Engine

1996-08-01
961731
Control of the flow of thermal energy in an air-cooled engine is important to the overall performance of the engine because of potential effects on engine performance, durability, design, and emissions. A methodology is being developed for the assessment of thermal flows in air-cooled engines, which includes the use of cycle simulation and in-cylinder heat flux measurements. The mechanism for the combination of cycle simulation, the measurement of in-cylinder heat flux and wall temperatures, and comparison of predicted and measured heat flux in the methodology is presented. The methodology consists of both simulation and experimental phases. To begin, a one-dimensional gas dynamics code (WAVE) has been used in conjunction with a detailed in-cylinder flow and combustion model (IRIS) in order to simulate engine operation in a variety of operating conditions. The methods used to apply the model to the air-cooled engine case are described in detail.
Technical Paper

Modeling Diesel Engine Spray Vaporization and Combustion

1992-02-01
920579
Diesel engine in-cylinder combustion processes have been studied using computational models with particular attention to spray development, vaporization, fuel/air mixture formation and combustion. A thermodynamic zero-dimensional cycle analysis program was used to determine initial conditions for the multidimensional calculations. A modified version of the time-dependent, three-dimensional computational fluid dynamics code KIVA-II was used for the computations, with a detailed treatment for the spray calculations and a simplified model for combustion. The calculations were used to obtain an understanding of the potential predictive capabilities of the models. It was found that there is a strong sensitivity of the results to numerical grid resolution. With proper grid resolution, the calculations were found to reproduce experimental data for non- vaporizing and vaporizing sprays. However, for vaporizing sprays with combustion, extremely fine grids are needed.
Technical Paper

Optimizing the University of Wisconsin's Parallel Hybrid-Electric Aluminum Intensive Vehicle

2000-03-06
2000-01-0593
The University of Wisconsin - Madison FutureCar Team has designed and built a lightweight, charge sustaining, parallel hybrid-electric vehicle for entry into the 1999 FutureCar Challenge. The base vehicle is a 1994 Mercury Sable Aluminum Intensive Vehicle (AIV), nicknamed the “Aluminum Cow,” weighing 1275 kg. The vehicle utilizes a high efficiency, Ford 1.8 liter, turbo-charged, direct-injection compression ignition engine. The goal is to achieve a combined FTP cycle fuel economy of 23.9 km/L (56 mpg) with California ULEV emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a full-size car. Strategies to reduce the overall vehicle weight are discussed in detail. Dynamometer and experimental testing is used to verify performance gains.
Technical Paper

Predictions of Residual Gas Fraction in IC Engines

1996-10-01
962052
It is well known that the accuracy of simulations of combustion processes in diesel and spark ignited (SI) engines depends on the initial conditions within the cylinder at intake valve closure (IVC). Residual gas affects the engine combustion processes through its influence on charge mass, temperature and dilution. In SI engines, there is little oxygen in the residual gas, and thus the dilution effect on flame propagation is more significant than in compression ignited (CI) engines. However, in CI engines, the ignition delay depends strongly on the in-cylinder gas temperature, which is proportional to the gas temperature at IVC. Furthermore, ignition delay is significantly affected by how much oxygen is present, which is also partly determined by the residual gas fraction. Therefore, it is of extreme importance to determine residual gas concentrations accurately.
Technical Paper

Processing and Characterization of Solid and Microcellular PHBV/Coir Fiber Composites

2010-04-12
2010-01-0422
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/coir fiber composites were prepared via both conventional and microcellular injection-molding processes. The surface of the hydrophilic coir fiber was modified by alkali and silane-treatment to improve its adhesion with PHBV. The morphology, thermal, and mechanical properties were investigated. The addition of coir fiber (treated and untreated) reduced cell size and increased cell density. Further decrease in cell size and increase in cell density were observed for treated fibers compared with PHBV/untreated fiber composites. Mechanical properties such as specific toughness and strain-at-break improved for both solid and microcellular specimens with the addition of coir fibers (both treated and untreated); however, the specific modulus remained essentially the same statistically while the specific strength decreased slightly.
Technical Paper

Reduced Magnet Designs and Position Self-Sensing Control Methods of Flux-Intensifying Permanent Magnet Synchronous Machines

2012-04-16
2012-01-0345
This paper presents advanced and cost-reducing technologies of a motor drive system with reduced permanent magnets but without a position sensor. The key enabler is the integration of novel designs of flux-intensifying interior permanent magnet synchronous machines (FI-IPMSMs) and position self-sensing control technologies. In this paper, we focus on two advantages of FI-IPMSM over conventional flux-weakening interior permanent magnet synchronous machines (FW-IPMSMs). The first benefit is that thinner magnets are possible and there is less concern for demagnetization because of its significantly smaller flux-weakening current. This paper presents two design examples of FI-IPMSMs, one of which has not only smaller magnets but also similar power conversion capability. The second advantage is reduced saturation and cross-saturation effect, which leads to improved position self-sensing capability.
Technical Paper

Reinventing the Internal Combustion (IC) Engine Head and Exhaust Gaskets

2002-03-04
2002-01-0332
This paper describes how a blend of silicon polymers, mixed with the right combination of fillers, enables the production of durable rubber IC engine head and exhaust gaskets. The resin blend, when mixed with glass fiber reinforcement, produces a liquid sealant suitable for exhaust gasket applications. The exhaust sealant and laminate head gaskets were tested on Ford 460 truck engines at Jasper Engine Company and completed more than 5,000 hours of durability testing without incident. Fabric reinforced polymer (FRP) head and exhaust gaskets can be laser cut from molded laminates, creating a ceramic glass-sealed edge. Thermogravimetric scans of typical gasket laminate material reveal an 88%-yield at 1000°C. FRP head gaskets also enable the cost-effective production of multiple spark ignition (MSI) head gaskets.
Journal Article

Stator Side Voltage Regulation of Permanent Magnet Generators

2009-11-10
2009-01-3095
Permanent magnet AC generators are robust, inexpensive, and efficient compared to wound-field synchronous generators with brushless exciters. Their application in variable-speed applications is made difficult by the variation of the stator voltage with shaft speed. This paper presents the use of stator-side reactive power injection as a means of regulating the stator voltage. Design-oriented analysis of machine performance for this mode of operation identifies an appropriate level of machine saliency that enables excellent terminal voltage regulation over a specified speed and load range, while minimizing stator current requirements. This paper demonstrates that the incorporation of saliency into the permanent magnet generator can significantly reduce the size of the reactive current source that is required to regulate the stator voltage during operation over a wide range of speeds and loads.
Technical Paper

The Development of the University of Wisconsin's Parallel Hybrid-Electric Aluminum Intensive Vehicle

1999-03-01
1999-01-0613
For competition in the 1998 FutureCar Challenge (FCC98), the University of Wisconsin - Madison FutureCar Team has designed and built a lightweight, charge sustaining, parallel hybrid electric vehicle by modifying a 1994 Mercury Sable Aluminum Intensive Vehicle (AIV), nicknamed the Aluminum Cow. The Wisconsin team is striving for a combined, FTP cycle gasoline-equivalent fuel economy of 21.3 km/L (50 mpg) and Ultra Low Emissions Vehicle (ULEV) federal emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a full-size car. To reach these goals, Wisconsin has concentrated on reducing the overall vehicle weight. In addition to customizing the drivetrain, the team has developed a vehicle control strategy that both aims to achieve these goals and also allows for the completion of a reliable hybrid in a short period of time.
X