Refine Your Search



Search Results

Technical Paper

Development of a Canning Method for Catalytic Converters using Ultra Thin Wall Substrates

There are benefits of using ultra thin wall (UTW) substrates (i.e., 900/2, 400/4, etc) in lowering cost and emission level. However, the more fragile mechanical characteristics of the UTW present a challenge to design and manufacture of robust catalytic converters. This paper describes a method of canning trial, where a combined Design of Experiment / Monte-Carlo analysis method was used, to develop and validate a canning method for ultra thin wall substrates. Canning trials were conducted in two stages-- Prototype Canning Trial and Production Canning Trial. In Prototype Canning Trial, the root cause of substrate failure was identified and a model for predicting substrate failure was established. Key factors affecting scrap rate and gap capability were identified and predictions were performed on scrap rate and gap capability with the allowed variations in the key factors. The results provided guidelines in designing production line and process control.
Technical Paper

An Approach for the Optical Design of an LED Fog Lamp

Traditionally fog lamps use halogen filament light sources. With the emergence of high brightness white LEDs, it is now possible to develop automotive forward lighting systems with LED light sources. Six LEDs are shown to be sufficient for the implementation of a European fog lamp using a faceted reflector optical approach. Each reflector together with the LED light source forms a modular element. The optical parameters of two different lamp designs are compared and correlation between the simulation and prototype measurements is shown. Further, additional forward lighting functions can be implemented through the use of additional elements.
Technical Paper

Accelerated Life Cycle Development for Electronic Throttle Control Software using Model-Based/Auto-Code Technology

The purpose of this paper is to demonstrate our success in taking advantage of model-based development tools and auto-code technology to accelerate the typical life cycle development of powertrain software. In particular, we applied the technology as a clean sheet approach to Visteon's third generation Electronic Throttle Control system. In the process of applying model-based development and 100% auto-code, we identified various pitfalls and created solutions to overcome the gap between technology and development process during each phase of the entire software development life cycle. We will share our lessons learned during the requirement, design, implementation, and validation stages.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Pressure Signal

MBT timing for an internal combustion engine is also called minimum spark timing for best torque or the spark timing for maximum brake torque. Unless engine spark timing is limited by engine knock or emission requirements at a certain operational condition, there exists an MBT timing that yields the maximum work for a given air-to-fuel mixture. Traditionally, MBT timing for a particular engine is determined by conducting a spark sweep process that requires a substantial amount of time to obtain an MBT calibration. Recently, on-line MBT timing detection schemes have been proposed based upon cylinder pressure or ionization signals using peak cylinder pressure location, 50 percent fuel mass fraction burn location, pressure ratio, and so on. Because these criteria are solely based upon data correlation and observation, both of them may change at different engine operational conditions. Therefore, calibration is still required for each MBT detection scheme.
Technical Paper

Test Strategy for Linux based Platforms using Open Source Tools

Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
Journal Article

Connected Car Architecture and Virtualization

Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Technical Paper

A Predictive Control Algorithm for a Yaw Stability Management System

Generalized predictive control (GPC) is a discrete time control strategy proposed by Clark et al [1]. The controller tries to predict the future output of a system or plant and then takes control action at present time based on future output error. Such a predictive control algorithm is presented in this paper for yaw stability management of an automobile. Most of the existing literature on the yaw stability management systems lacks the insight into the yaw rate error growth when the automobile is in a understeer or oversteer condition on a low friction coefficient surface in a handling maneuver. Simulation results show that the predictive feature of the proposed controller provides an effective way to control the yaw stability of a vehicle.
Technical Paper

Electronics Environmental Testing in Perspective - A Fresh Approach

A major part of product development is to validate robustness to the environment (e.g. temperature, vibration, EMC). Although much time and expense is spent doing so, using traditional approaches often leads to “feel good” results since the product “passes”. Such a false sense of security is misleading since such validation methods can have serious deficiencies. Presented is a Design Assurance process (Accelerated Stress Assurance Plan - ASAP) to validate modules that addresses these deficiencies. It places major emphasis on the analysis and development stages. It does not require large sample sizes, and overall test time and facilities is reduced (30-50% possible).. Just as for electronic modules, new and major changes to IC's need a shorter validation process. As an example, a relatively fast procedure for the production and application release of improved molding compounds for IC's is presented.
Technical Paper

Portable NVH Dynamometers

Noise Vibration and Harshness (NVH) characteristics have become a key differentiator between “Good” vehicles and “Best-In-Class” vehicles. While all OEM's and most Tier 1 suppliers have on-site in-ground chassis dynamometers, a need was identified to design, develop and bring to market, a fully capable portable NVH full vehicle chassis system. The original concept entailed a device, which could be brought to the customer's location, be fully self contained, requiring no external power, and provide data acquisition using transducers that would not contact the vehicle. With traditional instrumentation taking several hours to install, non-contacting lasers would be used to provide significant timesaving, and prevent any possible damage to the vehicle from pinched wires. The new methodology should provide data acquisition in as little as 20 minutes. Analysis would be accomplished immediately following testing, with hard copies available before the next vehicle was ready to run.
Technical Paper

DSS, The Driver Stability System of Visteon

This paper introduces the Driver Stability System (DSS) at Visteon. DSS is a new active comfort / safety system for automobiles which controls the seat bolsters independently in real time to enhance the lateral support of the occupants. Under turning maneuvers, DSS reacts to the vehicle dynamics to provide an increased contact area between the occupants and their seats, allowing optimal occupant location with respect to such variables as steering wheel angle, lateral acceleration, yaw rate, and vehicle velocity. The lateral force compensation is directly coupled to the dynamic movement of vehicle chassis and the change of road profile. The system consists of the seat bolster assembly including DC motors, wheel speed sensors, steering wheel sensor, lateral accelerometer, yaw rate sensor, and electronic control unit (ECU). This paper also discusses the control concept of DSS and its realistic controller structure.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).