Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation of End-Gas Temperature and Pressure Increases in Gasoline Engines and Relevance for Knock Occurrence

1997-05-01
971671
A detailed analysis of the end-gas temperature and pressure in gasoline engines has been performed. This analysis leads to a simplified zero-dimensional model, that considers both, the compression and the expansion of the end-gas by the piston movement, and the compression by the flame front. If autoignition occurs in the end-gas the sudden rise of the pressure and the heat release is calculated. The rate form of the first law of thermodynamics for a control volume combined with the mass conservation equation for an unsteady and a uniform-flow process are applied. The heat of formation in the end-gas due to the chemical activity has been taken into account. In addition, a chemical kinetic model has been applied in order to study the occurrence of autoignition and prediction of knock.
Technical Paper

In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970857
A model based on an ionization equilibrium analysis, that can relate the ion current to the state of the gas inside the combustion volume, has been presented earlier. This paper introduces several additional models, that together with the previous model have the purpose of improving the pressure predictions. One of the models is a chemistry model that enables us to realistically consider the current contribution from the most relevant species. A second model can predict the crank angle of the peak pressure and thereby substantially increase the accuracy of the pressure predictions. Several other additions and improvements have been introduced, including support for part load engine conditions.
Technical Paper

Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970856
The influence of variable air-fuel ratio inside a spark ignition engine is examined by the use of an ionization sensor. The measured ion currents are used for predicting the local air-fuel ratio in the vicinity of the spark plug. In order to support the results, a theoretical analysis has been made. An instationary chemical kinetic model burning a mixture of iso-octane and n-heptane is used for the calculations. The results are used to reconstruct the crank angle resolved ion current that has been measured in an engine. This technique has been developed in order to offer a supplementary low-cost facility of controlling the air-fuel ratio within the combustion chamber of an engine.
Technical Paper

In-Cylinder Flow in High Speed Two-Stroke Engines with Different Transfer Channels

1997-02-24
970357
2-D LDV measurements were performed in the cylinder of a two-stroke engine. The transfer channels of the cylinders were of two different designs: Open transfer channels and “cup handle” transfer channels. The engine was run at its rated speed, 9000 rpm. Optical access to the cylinder was achieved by replacing the standard cylinder head with a quartz window. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the flow out from the cup handle transfer channels is more directed away from the exhaust port, which promotes loop scavenging. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly towards the middle of the cylinder.
Technical Paper

Combustion Chambers for Supercharged Natural Gas Engines

1997-02-24
970221
This work is a continuation of earlier research conducted on the effects of different combustion chambers on turbulence, combustion, emissions and efficiency for natural gas converted diesel bus engines. In this second measurement series the engine (Volvo TD102) was supercharged to enable bmep up to 18 bar at λ = 1.6-1.9. Six different combustion chambers were used. The results show that different geometrical combustion chambers, with the same compression ratio (12:1), have very different combustion performance. A high rate of heat release is favorable for lean operation, and the design of the combustion chamber is very important for the knock and misfire limits.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Velocity Measurements

1996-10-01
961921
The object of this paper is to present a new way of analyzing in-cylinder velocity measurements. The technique is called Discrete Wavelet Transform (DWT) and it is similar to Fast Fourier Transform (FFT) with one important difference it is possible to obtain both time localized and frequency resolved information. This paper demonstrates the use of DWT calculations on in-cylinder LDV flow measurements for different combustion geometries in a natural gas converted truck engine. It will furthermore provide some information about how DWT can be used with in-cylinder measurements in the future.
Technical Paper

Crank Angle Resolved HC-Detection Using LIF in the Exhausts of Small Two-Stroke Engines Running at High Engine Speed

1996-10-01
961927
In order to separate the HC-emissions from two-stroke engines into short-circuit losses and emissions due to incomplete combustion, Laser Induced Fluorescence (LIF) measurements were performed on the exhaust gases just outside the exhaust ports of two engines of different designs. The difference between the two engines was the design of the transfer channels. One engine had “finger” transfer channels and one had “cup handle” transfer channels. Apart from that they were similar. The engine with “finger” transfer channels was earlier known to give more short-circuiting losses than the other engine, and that behavior was confirmed by these measurements. Generally, the results show that the emission of hydrocarbons has two peaks, one just after exhaust port opening and one late in the scavenging phase. The spectral information shows differences between the two peaks and it can be concluded that the latter peak is due to short-circuiting and the earlier due to incomplete combustion.
Technical Paper

Reactions Over A Double Layer Tri-Metal Three-Way Catalyst

1996-02-01
960801
The reactions over a commercially available double layer tri-metal type (Pt, Pd, Rh) passenger car catalyst were analysed. A parameter study was performed in synthetic exhaust gases at: steady state conversion, periodic oscillations, and controlled transients. The influences of gas phase composition, temperature, adiabatic heat of reaction and lambda oscillations were investigated. The reactions of nitrogen oxides, propene and carbon monoxide were simultaneously analysed. Fast response emission analysers were used to record the dynamic properties of the catalysts. The catalyst was found to have high conversion rates and high oxygen storage capacity at relatively low temperatures. The presence of sulphur dioxide was found to reduce the conversion of CO and NOx substantially. An emission increase of 40-70 % was observed for steady state conditions and at oscillating conditions the increase was more than 100%.
Technical Paper

An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor

1996-02-01
960337
The use of a spark plug as an ionization sensor in an engine, and its physical and chemical explanation has been investigated. By applying a small constant DC voltage across the electrodes of the spark plug and measuring the current through the electrode gap, the state of the gas can be probed. An analytical expression for the current as a function of temperature is derived, and an inverse relation, where the pressure is a function of the current, is also presented. It is also found that a relatively minor species, NO, seems to be the major agent responsible for the conductivity of the hot gas in the spark gap.
Technical Paper

The Effect of Valve Strategy on In-Cylinder Flow and Combustion

1996-02-01
960582
This study is focused on the effect of different valve strategies on the in-cylinder flow and combustion A conventional four-valve pentroof engine was modified to enable optical access to the combustion chamber To get information on the flow, a two-component LDV system was applied The combustion was monitored by the use of cylinder pressure in a one-zone heat release model The results show that the flow in the cylinder with the valves operating in the standard configuration has an expected tumble characteristic In this case the high frequency turbulence is homogeneous and has a peak approximately 20 CAD BTDC With one valve deactivated, the flow shows a swirling pattern The turbulence is then less homogeneous but the level of turbulence is increased When the single inlet valve was phased late against the crankshaft dramatic effects on the flow resulted The late inlet valve opening introduced a low cylinder pressure before the valve opened The high pressure difference across the valve introduced a high-velocity jet into the cylinder Turbulence was increased by a factor of two by this operational mode When two inlet valves were used, a reduction of turbulence resulted from a very late inlet cam phase
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

Residual Gas Visualization with Laser Induced Fluorescence

1995-10-01
952463
The influence of residual gases on the cycle-to-cycle variations in engine combustion was investigated. Two-photon planar laser-induced fluorescence was used for 2D-visualization of residual gas water. In order to avoid influence from fuel fluorescence and inhomogeneities premixed natural gas was used as fuel. Measurements were conducted at different load conditions with varying inlet manifold pressure. To find out how the residual gas distribution influences the combustion process the pressure development during combustion was monitored. From the pressure information a measure of the combustion rate at different phases of the flame development was calculated. The correlation between residual gas distribution and combustion rate was evaluated on a cycle to cycle basis. The results show that with an inlet manifold pressure of 0.3 bar the correlation between residual gas fraction and rate of combustion were 0.5-0.6. At full load though, lower correlation was found.
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
Technical Paper

Investigations of the Influence of Mixture Preparation on Cyclic Variations in a SI-Engine, Using Laser Induced Fluorescence

1995-02-01
950108
To study the effect of different injection timings on the charge inhomogeneity, planar laser-induced fluorescence (PLIF) was applied to an operating engine. Quantitative images of the fuel distribution within the engine were obtained. Since the fuel used, iso-octane, does not fluoresce, a dopant was required. Three-pentanone was found to have vapour pressure characteristics similar to those of iso-octane as well as low absorption and suitable spectral properties. A worst case estimation of the total accuracy from the PLIF images gives a maximum error of 0.03 in equivalence ratio. The results show that an early injection timing gives a higher degree of charge inhomogeneity close to the spark plug. It is also shown that charge inhomogeneity gives a more unstable engine operation. A correlation was noted between the combustion on a cycle to cycle basis and the average fuel concentration within a circular area close to the spark plug center.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part 2: Combustion and Emissions

1995-02-01
950517
The objective of this paper is to investigate how the combustion chamber design will influence combustion parameters and emissions in a natural gas SI engine. Ten different geometries were tried on a converted Volvo TD102 engine. For the different combustion chambers emissions and the pressure in the cylinder have been measured. The pressure in the cylinder was then used in a one-zone heat-release model to get different combustion parameters. The engine was operated unthrottled at 1200 rpm with different values of air/fuel ratio and EGR. The air/fuel ratio was varied from stoichiometric to lean limit. EGR values from 0 to 30% at stoichiometric air/fuel ratio were used. The results show a remarkably large difference in the rate of combustion between the chambers. The cycle-to-cycle variations are fairly independent of combustion chamber design as long as there is some squish area and the air and the natural gas are well mixed.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion

1995-02-01
950469
The most economical way to convert truck and bus DI-diesel engines to natural gas operation is to replace the injector with a spark plug and modify the combustion chamber in the piston crown for spark ignition operation. The modification of the piston crown should give a geometry well suited for spark ignition operation with the original swirling inlet port. Ten different geometries were tried on a converted VOLVO TD102 engine and a remarkably large difference in the rate of combustion was noted between the chambers. To find an explanation for this difference a cycle resolved measurement of the in-cylinder mean velocity and turbulence was performed with Laser Doppler Velocimetry (LDV). The results show a high correlation between in cylinder turbulence and rate of heat release in the main part of combustion.
Technical Paper

Nitrous Oxide Formation Over Three-Way Catalyst

1994-03-01
940926
The formation of Nitrous Oxide (N2O) over an aged three way catalyst was analysed in a laboratory reactor for a variety of simulated Otto engine exhaust gas conditions. Nitrous Oxide formation was further analysed during FTP75 dynamometer test with a car. The car was equipped with either an aged catalyst or a fresh one. A fast response diode laser system was modified to enable detection of Nitrous Oxide and Carbon Monoxide simultaneously. From laboratory data the kinetics of Nitrous Oxide formation were evaluated with mathematical simulations and a mechanism was suggested. The results were compared to data from vehicle tests and the results were discussed in the light of the laboratory study. Two general trends were confirmed, i) N2O formation increases at slightly lean conditions: ii) catalysts with a low degree of deterioration gave lower N2O emissions, iii) the extent of N2O formation goes though a maximum with respect to dissociation rate of NO.
Technical Paper

Deterioration of Three-Way Automotive Catalysts, Part I - Steady State and Transient Emission of Aged Catalyst

1993-03-01
930937
Five field-aged catalysts with different mileages were analysed with respect to emission performance and structural changes. The FTP-75 emission results were compared to synthetic exhaust gas tests including: i) light-off, ii) lambda screening at stationary and oscillating stoichiometry, iii) space velocity variation. Several samples from different positions of one catalyst were used to achieve the spatially resolved activity profile for that catalyst. Surface characterisation was used to characterise accumulated catalyst poison. Laboratory space velocity test was concluded to be a sensitive probe for catalyst performance: good correlation to vehicle emission data was found. An analysis of the influence of temperature and λ oscillation on the catalyst conversion performance was made, with particular emphasis on the ageing effects.
Technical Paper

Deterioration of Three-Way Automotive Catalysts, Part II - Oxygen Storage Capacity at Exhaust Conditions

1993-03-01
930944
Catalysts aged under different on-road conditions were analysed with respect to their conversion of CO and HC at step changes of the synthetic exhaust gas composition. Time resolved diode laser spectroscopy and fast response FID analysis were used to characterise the catalyst response to transient changes of CO and hydrocarbons in the exhaust gas. The oxygen storage capacity was monitored at various conditions; flow rate, catalyst temperature, previous exposure to oxidizing or reducing atmosphere and amplitude of the perturbation. The technique appeared to provide a sensitive probe for analysis of the dynamic oxygen storage capacity of new and aged catalysts at exhaust like conditions. The results correlate well with the transient emission performance during vehicle tests. Further, surface characterization using SEM/EDS and XPS techniques indicated that phosphate formation was the most probable cause of deactivation.
X