Refine Your Search

Topic

Search Results

Technical Paper

Institute for Manufacturing Research, Wayne State University

1998-05-12
981345
The purpose of the Institute for Manufacturing Research (IMR) is to enhance Wayne State University's existing technological strength in the areas of manufacturing research which have demonstrated potential benefits for the State's economy. IMR's faculty conduct basic and applied research in selected areas of manufacturing science. The research programs within the Institute are broadly interdisciplinary and industrially interactive, and are organized around the following areas: materials development, modification, and nondestructive evaluation; software technology for manufacturing and engineering; and product reliability and machine tool research. Faculty from eight departments within the Colleges of Science and Engineering participate in IMR.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

2002-11-18
2002-01-3093
Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
Technical Paper

Research of the Primary Breakup of a Planar Liquid Sheet Produced by an Air-Blast Atomizer

2014-04-01
2014-01-1430
The primary breakup of a planar liquid sheet produced by an air-blast atomizer was studied through numerical simulations, in order to reveal physical mechanisms involved during this process. The reliability of simulations was verified by comparing the macroscopic parameters, e.g. breakup time and spatial growth rate, with experimental data. Shear instability and RT (Rayleigh-Taylor) instability were found to play important roles during the primary breakup. By analyzing the acceleration of a fluid parcel within liquid sheet using Discrete Particle Method, and measuring the wave length of transverse unstable wave, RT instability was found to be partially responsible for transverse instability. The predictions of LISA (Linearized Instability Sheet Atomization) model on breakup time were compared to experiments, and obvious differences were found to exist.
Technical Paper

Research on Driving Range Estimation for Electric Vehicles Based on Corrected Battery Model

2015-04-14
2015-01-0250
In order to reduce driver's anxiety about range and energy, a direct and effective approach is to offer the remaining driving range based on the vehicle's states. Consequently, the estimation accuracy of the battery's remaining energy is very important. This paper introduces a experiment-based model for predicting the remaining energy, which considers many factors, such as current, temperature, difference between battery cells, and so on. This approach ensures the accuracy of the remaining driving range. Finally the method is validated through the environment space test. Validation results show that this method can offer exact remaining energy, which reduces the estimation error of the remaining range greatly.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Journal Article

System Design and Parameter Matching for the New Generation of Hybrid Electric City Bus

2008-06-23
2008-01-1573
In this paper, based on the research of the first generation of a hybrid electric city bus, principle researches have been offered on the parameters matching of the power-train and main components for the new generation of hybrid electric city bus. The vehicle system was designed integrated, and then simulation platform was developed and established. The dynamic and economy performance can be predicted based on the above work, results show that the designed hybrid electric city bus can meet the performance demands and validate rationality of the parameters matching.
Technical Paper

The Algorithmic Research of Multi-operating Mode Energy Management System

2013-04-08
2013-01-0988
The traditional energy management algorithm is mainly based on a single driving cycle, it is obvious that many factors might be often neglected by designer, such as different driving cycles would suit for different control strategies. But they tend to make decisions on the balance of torque distribution and battery power that based on a single driving cycle. Therefore, it is very difficult to achieve the optimal control in each case. In this paper we introduce a new design concept of Multi-operating mode energy management, a mathematical model of the energy management applied to a hybrid vehicle system is presented. Results of simulations using the model with the Multi-operating mode energy management were compared with results of simulations using a model with the single mode energy management, allowing the energy efficiency evaluation of the proposed energy management system.
Technical Paper

The Development of a Small Restricted Turbocharged Racecar Engine

2016-11-08
2016-32-0061
This paper summarized the development methodology and technical experiences on Formula Student racecar engines acquired by Jilin University from 2011 to 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and were modified to turbocharged engines which met the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple research projects have been conducted surrounding the turbocharging technology. These research projects have covered multiple areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the tuning and control of the boost pressure as well as the design of the lubrication system for the turbocharger, etc.
Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
X