Refine Your Search

Topic

Author

Search Results

Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Investigation of a Radio Frequency Plasma Ignitor for Possible Internal Combustion Engine Use

1997-02-24
970071
This paper outlines the development process of a radio frequency (RF) plasma ignitor and its application to internal combustion engines. The system features a high Q quarter-wave coaxial cavity resonator that serves as an electric field magnifier and as a discharge device. The preliminary characteristics of the cavity have been studied by the construction and operation of larger scaled devices. Testing has been performed using these devices in a testing apparatus operating under ambient conditions. Once an analysis of the large-scale device is complete, a smaller device, more inclined to interfacing with a standard engine, will be constructed and tested on a full scale engine. The final device is intended to operate in the 800-1500 MHz range.
Technical Paper

Speciation of Heavy Duty Diesel Exhaust Emissions under Steady State Operating Conditions

1996-10-01
962159
This paper presents results from a study on speciation of the emission profiles and on the ozone forming potential of heavy-duty diesel exhaust under steady state engine operation. Very limited attempts have been made at determining the ozone forming potential of heavy duty diesel exhaust emissions. In this study a proportional sample of the dilute exhaust was drawn from a CFV-CVS system using a temperature controlled sampling line. The particulate matter was collected on a 70 mm Teflon coated glass fiber filter (TX40HI20WW), the semi-volatiles on XAD-2 copolymer resin and volatiles in Tedlar bags. The samples were analyzed by gas chromatography after conditioning and chemical extractions. The initial phase of the study was directed towards developing techniques and establishing protocols to determine the ozone forming potential of heavy-duty diesel exhaust. A pre-chamber naturally aspirated engine was tested on steady-state modes 1, 3, 5, 7 and 8 of the ISO 8 mode cycle.
Technical Paper

Effect of Fuel Composition on the Operation of a Lean Burn Natural Gas Engine

1995-10-01
952560
With the implementation of a closed loop fuel control system, operation of lean-burn natural gas engines can be optimized in terms of reducing emissions while maximizing efficiency. Such a system would compensate for variations in fuel composition, but also would correct for variations in volumetric efficiency due to immediate engine history and long-term engine component wear. Present day engine controllers perform well when they are operated with the same gas composition for which they were calibrated, but because fuel composition varies geographically as well as seasonally, some method of compensation is required. A closed loop control system on a medium-duty lean-burn engine will enhance performance by maintaining the desired air-fuel ratio to eliminate any unwanted rich or lean excursions (relative to the desired air-fuel ratio) that produce excess engine-out emissions. Such a system can also guard against internal engine damage due to overheating and/or engine knock.
Technical Paper

Hydrodynamic Mobility Analysis of the Vane Lift Mechanism for the Rand Cam™ Engine

1995-02-01
950450
In this paper, a new method for the hydro-dynamic analysis of a sliding cylinder in a fully lubricated parallel track is presented. The method is an extension of Booker's “Mobility Method” (developed for cylindrical journal bearings) to the case of sliding cylinders, in which the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the cylinder. In the Rand Cam™ Engine [1]*, the axicycloidal motion of vanes is driven by a rotor and a cylindrical cam, and one of the alternative designs to provide this function is based on a cylindrical pin sliding within a track which follows the profile of the motion of the main cams of the engine. This function is very important for the engine, since it separates the load bearing function from the sealing function left to the apex-like seals.
Technical Paper

Heavy Duty Testing Cycles: Survey and Comparison

1994-11-01
942263
The need to assess the effect of exhaust gas emissions from heavy duty vehicles (buses and trucks) on emission inventories is urgent. Exhaust gas emissions measured during the fuel economy measurement test procedures that are used in different countries sometimes do not represent the in-use vehicle emissions. Since both local and imported vehicles are running on the roads, it is thought that studying the testing cycles of the major vehicle manufacturer countries is worthy. Standard vehicle testing cycles on chassis dynamometer from the United States, Canada, European Community Market, and Japan1 are considered in this study. Each of the tested cycles is categorized as either actual or synthesized cycle and its representativness of the observed driving patterns is investigated. A total of fourteen parameters are chosen to characterize any given driving cycle and the cycles under investigation were compared using these parameters.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

1994-03-01
940617
In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

1992-11-01
922435
The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.
Technical Paper

Respirable Particulate Genotoxicant Distribution in Diesel Exhaust and Mine Atmospheres

1992-09-01
921752
Results of a research effort directed towards identifying and measuring the genotoxic properties of respirable particulate matter involved in mining exposures, especially those which may synergistically affect genotoxic hazard, are presented. Particulate matter emissions from a direct injection diesel engine have been sampled and assayed to determine the genotoxic potential as a function of engine operating conditions. Diesel exhaust from a Caterpillar 3304 diesel engine, representative of the ones found in underground mines, rated 100 hp at 2200 rpm is diluted in a multi-tube mini-dilution tunnel and the particulate matter is collected on 70 mm fluorocarbon coated glass fiber filters as well as on 8″ x 10″ hi-volume filters. A six mode steady state duty cycle was used to relate engine operating conditions to the genotoxic potential.
Technical Paper

Analysis of RF Corona Discharge Plasma Ignition

1992-08-03
929502
Corona discharge from a RF quarter wave coaxial cavity resonator is considered as a plasma ignition source for spark ignited (SI) internal combustion (IC) engines. The gaseous discharge processes associated with this device are analyzed using principles of gas kinetics and gaseous electronics, with assumed values for the electric field strength. Corona discharge occurs when the electric field shaped and concentrated by a single electrode exceeds the breakdown potential of the surrounding gas. Ambient electrons, naturally present due to ionizing radiation, drift in the direction of the externally applied field, gaining energy while undergoing elastic collisions with neutral molecules. After gaining sufficient energy they dissociate, excite, or ionize the neutral particles through inelastic collision, creating additional electrons. This process leads to avalanche electrical breakdown of the gas within about 10-8 sec.
Technical Paper

RF Plasma Ignition System Concept for Lean Burn Internal Combustion Engines

1992-08-03
929416
This paper describes a Radio Frequency (RF) plasma ignitor concept intended for application to internal combustion engines. This system features a high Q quarter-wave coaxial cavity resonator, of simple construction, serving as a tuning element in the RF power supply, a voltage magnifier, and a discharge device attached to the combustion chamber. The resonator is filled with a dielectric and open at the discharge end. The center conductor is terminated with a revolute solid capacitive electrode which concentrates the associated electric field. This non-uniform electric field within the air/fuel mixture creates a corona discharge plasma which is excited at the RF operating frequency and the resulting ionic species recombine to initiate combustion. The RF excitation, relative to DC, reduces breakdown voltage and electrode degradation.
Technical Paper

Solid State Electrochemical Cell for NOx Reduction

1992-08-03
929418
An electrochemical cell is presented which reduces NOx emissions from a vehicle fueled by dedicated natural gas. The cell is comprised of a honeycomb shaped ceramic which is chemically coated with an electrically conductive material in two distinct regions which serve as electrodes such that, with the application of a voltage potential, a cathode and anode are formed. As the exhaust gas flows through the inner channels of the cell, the electrochemical reduction of NOx at the cathode yields nitrogen gas and oxide ions. The nitrogen continues to flow through the cell while the oxide ions dissolve in the solid electrolyte. At the anodic zone, oxide ions are converted to oxygen gas. The pressure drop across the cell was experimentally measured to insure that the back pressure created by the cell does not create a significant reduction in the efficiency of the engine.
Technical Paper

The Stiller-Smith Engine-The Dewelopment of a New Environment for High-Tech Materials

1987-01-20
870721
New high-tech materials which are anticipated to revolutionize the internal combustion engine are being created everyday. However, their actual utilization in existing engines has encountered numerous stumbling blocks. High piston sidewall forces and thermal stresses are some of the problems of primary concern. The Stiller-Smith Engine should provide an environment more conducive to the use of some of these materials. Absent from the Stiller-Smith Engine is a crankshaft, and thus a very different motion is observed. Since all parts in the Stiller-Smith Engine move in either linear or rotary fashion it is simple to balance. Additionally the use of linear connecting rod bearings changes the location of the sidewall forces thus providing an isolated combustion chamber more tolerant to brittle materials and potential adiabatic designs. Presented herein is the development of this new engine environment, from conceptualization to an outline of present and future research.
Technical Paper

The Stiller-Smith Mechanism: A Kinematic Analysis

1986-02-01
860535
The Stiller-Smith Mechanism provides a unique approach in the use of the rotational characteristics of the cross-slider link of the elliptic trammel. Establishment of the research need and a historical development of the design concept are presented complete with a detailed kinematic analysis. Successful incorporation of the new mechanism is pictorially presented.
X