Refine Your Search

Topic

Search Results

Standard

Aircraft Cargo Conveyor - Battery Powered

2008-10-20
HISTORICAL
ARP1836B
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a battery powered, self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
Standard

Charger for Battery Powered Ground Support Equipment

2009-06-29
HISTORICAL
ARP1816C
This SAE Aerospace Recommended Practice (ARP) describes two general types of Ground Support Equipment (GSE) battery chargers. The conventional industrial battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger”. The other type a fast battery charger typically used as an opportunity charger for ground support equipment, hereafter called “Fast Charger”. Recommendations that apply to both types will refer generically to “charger”.
Standard

Charger for Battery Powered Ground Support Equipment

2015-07-13
CURRENT
ARP1816D
This SAE Aerospace Recommended Practice (ARP) describes three general types of Ground Support Equipment (GSE) battery chargers. The battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger.” A charger, hereafter called “Opportunity Charger,” which has the ability to charge at a slightly faster rate than a conventional charger. A charger, hereafter called “Fast Charger,” which has the ability to charge at a much faster rate than a conventional charger. Recommendations that apply to all types will refer generically to “charger.”
Standard

Charger for Battery Powered Ground Support Equipment

1984-09-01
HISTORICAL
ARP1816
This SAE Aerospace Recommended Practice (ARP) describes two general types of Ground Support Equipment (GSE) battery chargers. The conventional industrial battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger”. The other type a fast battery charger typically used as an opportunity charger for ground support equipment, hereafter called “Fast Charger”. Recommendations that apply to both types will refer generically to “charger”.
Standard

CHARGER FOR BATTERY POWERED GROUND SUPPORT EQUIPMENT

1996-07-01
HISTORICAL
ARP1816B
This SAE Aerospace Recommended Practice (ARP) describes an industrial battery charger, solid state type, hereafter called charger, for use in charging lead acid batteries in ground support equipment.
Standard

Charger for Battery Powered Ground Support Equipment

1991-04-01
HISTORICAL
ARP1816A
This SAE Aerospace Recommended Practice (ARP) describes two general types of Ground Support Equipment (GSE) battery chargers. The conventional industrial battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger”. The other type a fast battery charger typically used as an opportunity charger for ground support equipment, hereafter called “Fast Charger”. Recommendations that apply to both types will refer generically to “charger”.
Standard

Maintenance of Batteries and Battery Charging and Servicing Facilities

1998-12-01
CURRENT
AIR1898A
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
Standard

Battery Powered Aircraft Tow Tractors - Factors for Design Consideration

1990-08-01
CURRENT
AIR1854A
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers.
Standard

MAINTENANCE OF BATTERIES AND BATTERY CHARGING AND SERVICING FACILITIES

1992-06-10
HISTORICAL
AIR1898
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
Standard

Aircraft Jacking Pads Adapters and Sockets Design and Installation of

2014-06-24
CURRENT
AS8091A
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
Standard

Electric Baggage/Cargo Tractor

2017-06-09
CURRENT
ARP1804B
This SAE Aerospace Recommended Practice (ARP) outlines the design and performance requirements for a battery-powered electric tow tractor for the handling of baggage or cargo trailers in airline service. The use of “shall” in this document indicates a mandatory requirement. The use of “should” indicates a recommendation or that which is advised but not required.
Standard

Electric Baggage/Cargo Tractor

2005-11-01
HISTORICAL
ARP1804A
This SAE Aerospace Recommended Practice (ARP) outlines the design and performance requirements for a battery-powered electric tow tractor for the handling of baggage or cargo trailers in airline service. The use of “shall” in this document indicates a mandatory requirement. The use of “should” indicates a recommendation or that which is advised but not required.
Standard

ELECTRIC BAGGAGE/CARGO TRACTOR

1983-04-01
HISTORICAL
ARP1804
This document outlines the functional and design requirements for a battery-powered electric tow tractor in the handling of baggage or cargo trailers in airline service.
Standard

AIRCRAFT MAINTENANCE JACKS - GENERAL REQUIREMENTS

1994-07-01
HISTORICAL
AS4775
This document covers the general requirements for hydraulic jacks as used on commercial aircraft. It can be applied to tripod, unipod, and axle jacks which may be used on open ramp areas as well as in the aircraft hanger.
Standard

Aircraft Maintenance Jacks - General Requirements

2017-01-10
CURRENT
AS4775B
This document covers the general requirements for hydraulic aircraft jacks. It can be applied to tripod, unipod, and axle jacks that may be used on open ramp areas as well as in the aircraft hangar. Throughout this Aerospace Standard, the minimum essential criteria are identified by the key word “shall”. Recommended criteria are identified by use of the key word “should”. Deviation from recommended criteria should only occur after careful consideration and thorough service evaluation have shown alternate methods to provide an equivalent level of safety. The term “vertical load” throughout this Aerospace Standard is defined as the force imposed on the aircraft jack at the airframe jack point.
Standard

Aircraft Maintenance Jacks - General Requirements

2004-12-14
HISTORICAL
AS4775A
This document covers the general requirements for hydraulic aircraft jacks. It can be applied to tripod, unipod, and axle jacks that may be used on open ramp areas as well as in the aircraft hanger. Throughout this Aerospace Standard, the minimum essential criteria are identified by the key word “shall”. Recommended criteria are identified by use of the key word “should”. Deviation from recommended criteria should only occur after careful consideration and thorough service evaluation have shown alternate methods to provide an equivalent level of safety. The term “vertical load” throughout this Aerospace Standard is defined as the force imposed on the aircraft jack at the airframe jack point.
Standard

Aircraft Towbar

1997-12-01
HISTORICAL
ARP1915B
This SAE Aerospace Recommended Practice (ARP) outlines the basic general design considerations for aircraft towbars.
X