Refine Your Search

Search Results

Standard

H-III5F Spine Box Update to Eliminate Noise

2022-05-09
CURRENT
J2915_202205
This SAE Information Report documents the problems with the 2002 regulated version of the spine box and defines a recommended solution to resolve the problem.
Standard

Hybrid III 3-Year Old Child Dummy User's Manual

2011-03-22
HISTORICAL
J2857_201103
This user’s manual covers the Hybrid III 3-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy.
Standard

Hybrid III 3-Year Old Child Dummy User’s Manual

2023-01-13
CURRENT
J2857_202301
This user’s manual covers the Hybrid III 3-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy.
Standard

Hybrid III Family Chest Potentiometer Calibration Procedure

2000-06-30
HISTORICAL
J2517_200006
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent non-linearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is non-linear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/(volt/volt) or mm/(mvolt/volt)).
Standard

Hybrid III Family Chest Potentiometer Calibration Procedure

2006-09-22
HISTORICAL
J2517_200609
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/ (volt/volt) or mm/ (mvolt/volt)).
Standard

Hybrid III Family Chest Potentiometer Calibration Procedure

2022-10-07
CURRENT
J2517_202210
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/(volt/volt) or mm/(mvolt/volt)).
Standard

Hybrid III Six-Year-Old Child Dummy User's Manual

2007-08-21
HISTORICAL
J2706_200708
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the H-III6C dummy, certify its components and to verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints.
Standard

Hybrid III Six-Year-Old Child Dummy User's Manual

2013-06-19
HISTORICAL
J2706_201306
This user’s manual covers the Hybrid III 6-year-old child test dummy, including changes specified in 49 CFR Part 572, Subpart N in the final rule dated December 9, 2010. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. Appendix A contains guidelines for safe handling of instrumented dummies. Appendix B contains instructions for repairing dummy flesh. Appendix C includes procedures for adjusting the joints throughout the dummy.
Standard

Hybrid III Ten-Year Old Child Dummy User’s Manual

2023-05-01
CURRENT
J2858_202305
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy.
Standard

Hybrid III Ten-Year-Old Child Dummy User's Manual

2017-10-11
HISTORICAL
J2858_201710
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy.
Standard

Low Speed Knee Slider Test Procedure for the Hybrid III 50th Male Dummy

2009-03-05
HISTORICAL
J2876_200903
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
Standard

Low Speed Knee Slider Test Procedure for the Hybrid III 50th Male Dummy

2015-05-07
HISTORICAL
J2876_201505
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
Standard

Low Speed Knee Slider Test Procedure for the Hybrid III 50th Male Dummy

2022-07-29
CURRENT
J2876_202207
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
X