Refine Your Search

Topic

Search Results

Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components--Immunity to AC Power Line Electric Fields

2006-05-17
HISTORICAL
J1113/26_200605
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2019-04-30
WIP
J1113/26
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components-Immunity to Ac Power Line Electric Fields

1995-09-01
HISTORICAL
J1113/26_199509
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2018-10-25
CURRENT
J1113/1_201810
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. In the event that an amendment is made, or a new edition is published, the new ISO document shall become part of this standard 6 months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21, and SAE J1113-42, respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Components of Vehicles, Boats (up to 15 m), and Machines (Except Aircraft) (16.6 Hz to 18 GHz)

2013-10-01
HISTORICAL
J1113/1_201310
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2 and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3 , SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42, respectively. In the event that an amendment is made or a new edition is published, the new ISO document shall become part of this standard six months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42 respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2005-09-27
HISTORICAL
J1113/27_200509
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. Reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components-- Part 27--Immunity to Radiated Electromagnetic Fields--Mode Stir Reverberation Method

1995-02-01
HISTORICAL
J1113/27_199502
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. Reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz to 10 GHz. At a later date, pulse modulation capability will be added for testing above 1 GHz. This document provides the component design and test engineers with a test procedure and the performance requirements necessary to evaluate the immunity of electronic devices to radiated electromagnetic fields early in the design stage as well as pilot and production stages. Ensuring electromagnetic compatibility early in the development stage will minimize costly changes later in the program and will prevent excessive component level hardening during full-vehicle level testing.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2012-06-06
HISTORICAL
J1113/27_201206
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2017-10-10
CURRENT
J1113/27_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Immunity to radiated electric fields--Bulk Current Injection (BCI) Method

1995-04-01
HISTORICAL
J1113/4_199504
This SAE Recommended Practice defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI) uses a current probe to inject RF current from 1 to 400 MHz into the wiring harness of automotive devices. BCI is one of a number of test methods that can be used to simulate the electromagnetic field. For a list of others, see SAE J1113/1.
Standard

Immunity to Radiated Electromagnetic Fields-Bulk Current Injection (BCI) Method

1997-07-01
HISTORICAL
J1113/4_199705
This SAE Recommended Practice defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF current from 1 to 400 MHz into the wiring harness of automotive devices. BCI is one of a number of test methods that can be used to simulate the electromagnetic field. For a list of others, see SAE J1113/1.
Standard

Immunity to Radiated Electromagnetic Fields-Bulk Current Injection (Bci) Method

1998-02-01
HISTORICAL
J1113/4_199802
This SAE Recommended Practice defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF current from 1 to 400 MHz into the wiring harness of automotive devices. BCI is one of a number of test methods that can be used to simulate the electromagnetic field. For a list of others, see SAE J1113/1.
Standard

Immunity to Radiated Electromagnetic Fields-Bulk Current Injection (BCI) Method

2004-08-04
HISTORICAL
J1113/4_200408
This SAE Recommended Practice defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF current from 1 to 400 MHz into the wiring harness of automotive devices. BCI is one of a number of test methods that can be used to simulate the electromagnetic field. For a list of others, see SAE J1113/1.
Standard

Immunity to Radiated Electromagnetic Fields - Bulk Current Injection (BCI) Method

2014-04-25
HISTORICAL
J1113/4_201404
This SAE Standard defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF onto the wiring harness in the frequency range of 1 to 400 MHz. BCI is one of a number of test methods that can be used to simulate the electromagnetic field.
Standard

Immunity to Radiated Electromagnetic Fields - Bulk Current Injection (BCI) Method

2020-02-24
CURRENT
J1113/4_202002
This SAE Standard defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called bulk current injection (BCI), uses a current probe to inject RF onto the wiring harness in the frequency range of 1 to 400 MHz. BCI is one of a number of test methods that can be used to simulate the electromagnetic field. The test method refers to ISO 11452-4 (please refer to ISO 11452-4 for test procedures). In addition to ISO 11452-4, this test method also includes a differential bulk current injection (DBCI) test. DBCI is described in Section 4 of this document.
X