Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Pressure Oscillations During Rapid HCCI Combustion

2003-10-27
2003-01-3217
This work has focused on studying the in-cylinder pressure fluctuations caused by rapid HCCI combustion and determine what they consist of. Inhomogeneous autoignition sets up pressure waves traversing the combustion chamber. These pressure waves induce high gas velocities which causes increased heat transfer to the walls or in worst case engine damage. In order to study the pressure fluctuations a number of pressure transducers were mounted in the combustion chamber. The multi transducer arrangement was such that six transducers were placed circumferentially, one placed near the centre and one at a slight offset in the combustion chamber. The fitting of six transducers circumferentially was enabled by a spacer design and the two top mounted transducers were fitted in a modified cylinder head. During testing a disc shaped combustion chamber was used. The results of the tests conducted were that the in-cylinder pressure experienced during rapid HCCI-combustion is inhomogeneous.
Technical Paper

Ion Current Sensing for HCCI Combustion Feedback

2003-10-27
2003-01-3216
Measurement of ion current signal from HCCI combustion was performed. The aim of the work was to investigate if a measurable ion current signal exists and if it is possible to obtain useful information about the combustion process. Furthermore, influence of mixture quality in terms of air/fuel ratio and EGR on the ion current signal was studied. A conventional spark plug was used as ionization sensor. A DC voltage (85 Volt) was applied across the electrode gap. By measuring the current through the gap the state of the gas can be probed. A comparison between measured pressure and ion current signal was performed, and dynamic models were estimated by using system identification methods. The study shows that an ion current signal can be obtained from HCCI combustion and that the signal level is very sensitive to the fuel/air equivalence ratio.
Technical Paper

HCCI Combustion Phasing with Closed-Loop Combustion Control Using Variable Compression Ratio in a Multi Cylinder Engine

2003-05-19
2003-01-1830
This study applies Closed-Loop Combustion Control (CLCC) using Variable Compression Ratio (VCR) and cylinder balancing using variable lambda to solve the problem. Step changes of set points for combustion phasing, Compression Ratio (CR), and load together with ramps of engine speed and inlet air temperature are investigated. Performances of the controllers are investigated by running the engine at either a constant amount of injected fuel corresponding to an approximate load of 1.5 or 2.5 bar BMEP and/or constant speed of 2000 rpm. Commercial RON 92 gasoline is used in the test. The CLCC is found to be fast and effective and has a potential of handling step changes in a matter of cycles, while the speed and temperature ramps need some more optimization of the CLCC. The CR controller is very fast and has a time constant corresponding to three engine cycles at 2000 rpm.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

2003-03-03
2003-01-0717
Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine

2003-03-03
2003-01-0743
This paper discusses the effects of cooled EGR on a turbo charged multi cylinder HCCI engine. A six cylinder, 12 liter, Scania D12 truck engine is modified for HCCI operation. It is fitted with port fuel injection of ethanol and n-heptane and cylinder pressure sensors for closed loop combustion control. The effects of EGR are studied in different operating regimes of the engine. During idle, low speed and no load, the focus is on the effects on combustion efficiency, emissions of unburned hydrocarbons and CO. At intermediate load, run without turbocharging to achieve a well defined experiment, combustion efficiency and emissions from incomplete combustion are still of interest. However the effect on NOx and the thermodynamic effect on thermal efficiency, from a different gas composition, are studied as well. At high load and boost pressure the main focus is NOx emissions and the ability to run high mean effective pressure without exceeding the physical constraints of the engine.
Technical Paper

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers

2002-10-21
2002-01-2686
One way to extend the lean burn limit of a natural gas engine is by addition of hydrogen to the primary fuel. This paper presents measurements made on a one cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0, 5, 10 and 15 %-vol) added to natural gas. Three operating points were investigated for each combustion chamber and each hydrogen content level; idle, part load (5 bar IMEP) and 13 bar IMEP (simulated turbocharging). Air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, a range of ignition timings were tested to find maximum brake torque (MBT) and/or knock. Heat-release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean limit.
Technical Paper

HCCI Combustion Phasing in a Multi Cylinder Engine Using Variable Compression Ratio

2002-10-21
2002-01-2858
Combustion phasing in a Homogeneous Charge Compression Ignition (HCCI) engine can be achieved by affecting the time history of pressure and temperature in the cylinder. The most common way has been to control the inlet air temperature and thereby the temperature in the cylinder at the end of the compression stroke. However this is a slow parameter to control, especially cycle to cycle. A multi cylinder engine using Variable Compression Ratio (VCR) for controlling the compression temperature and consequently the combustion phasing is used in the experiments. Operating range in terms of speed and load is investigated in naturally aspirated mode. Trade-off between inlet air temperature and Compression Ratio (CR) is evaluated. Primary reference fuels, isooctane / n-heptane, are used during the tests. High speed HCCI operation up to 5000 rpm is possible with a fuel corresponding to RON 60. The effect of octane number with and without exhaust cam phasing is also investigated.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

A Turbo Charged Dual Fuel HCCI Engine

2001-05-07
2001-01-1896
A 6-cylinder truck engine is modified for turbo charged dual fuel Homogeneous Charge Compression Ignition (HCCI) engine operation. Two different fuels, ethanol and n-heptane, are used to control the ignition timing. The objective of this study is to demonstrate high load operation of a full size HCCI engine and to discuss some of the typical constraints associated with HCCI operation. This study proves the possibility to achieve high loads, up to 16 bar Brake Mean Effective Pressure (BMEP), and ultra low NOx emissions, using turbo charging and dual fuel. Although the system shows great potential, it is obvious that the lack of inlet air pre heating is a drawback at low loads, where combustion efficiency suffers. At high loads, the low exhaust temperature provides little energy for turbo charging, thus causing pump losses higher than for a comparable diesel engine. Design of turbo charger therefore, is a key issue in order to achieve high loads in combination with high efficiency.
Technical Paper

Closed-Loop Control of an HCCI Engine

2001-03-05
2001-01-1031
This paper presents a strategy for closed-loop control of a multi cylinder turbo charged Homogeneous Charge Compression Ignition (HCCI) engine. A dual fuel port injection system allows control of combustion timing and load individually for each cylinder. The two fuels used are isooctane and n-heptane, which provides a wide range of autoignition properties. Cylinder pressure sensors provide feedback and information regarding combustion. The angle of 50% heat release is calculated in real time for each cycle and used for timing feedback. Inlet air preheating is used at low loads to maintain a high combustion efficiency.
X