Refine Your Search

Topic

Search Results

Technical Paper

Suspension Parameter Measurement Using Side-Pull Test To Enhance Modeling of Vehicle Roll

1999-03-01
1999-01-1323
This paper describes a new laboratory test facility for measuring suspension parameters that affect rollover. The Side-Pull mechanism rolls the test vehicle through a cable attached rigidly at its center of gravity (CG). Changes in wheel camber and wheel steer angles are measured as a function of body roll angle. The roll test simulates a steady-state cornering. Thus, both compliance and kinematic forces are fed simultaneously to the vehicle as they would be applied in a real cornering situation. The lateral load transfer, and roll angle as a function of simulated lateral acceleration is determined. The Side-Pull Roll Measurement has advantages over the conventional roll tests where the rolling force couple is applied vertically. The Side-Pull mechanism rolls the vehicle in a unrestricted way with horizontal forces applied at the tire / pad contact and the CG location. Thus, the measurements take into account coupling of compliance with roll.
Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

Model Validation of the 2006 BMW 330i for the National Advanced Driving Simulator

2007-04-16
2007-01-0817
This paper presents an evaluation of a complete vehicle dynamics model for a 2006 BMW 330i to be used for the National Advanced Driving Simulator. Vehicle handling and braking are evaluated and simulation results are compared with experimental field-testing. NADSdyna, the National Advanced Driving Simulator vehicle dynamics software, is used. The BMW evaluation covers vehicle directional dynamics that include steady-state, transient, and frequency domain responses. These evaluations are performed with the DSC (Dynamic Stability and Control) turned off to ensure the principle mechanical properties of the vehicle are properly modeled before enabling the electronic stability system. The evaluation also includes simulation runs with DSC turned on for the J-turn and severe lane change maneuvers.
Technical Paper

Measured Vehicle Center-of-Gravity Locations - Including NHTSA's Data Through 2008 NCAP

2010-04-12
2010-01-0086
This paper is a printed listing of public domain vehicle center-of-gravity (CG) location measurements conducted on behalf of the National Highway Traffic Safety Administration (NHTSA). This paper is an extension of the 1999 SAE paper titled “Measured Vehicle Inertia Parameters - NHTSA's Data Through November 1998” ( 1 ). The previous paper contained data for 496 vehicles. This paper includes data for 528 additional vehicles tested as part of NHTSA's New Car Assessment Program (NCAP) for year 2001 through year 2008 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ). The previous data included center-of-gravity location and mass moments-of-inertia for nearly all of the entries. The NCAP involves only the CG location measurements; so the vehicles listed in this paper do not have inertia data. This paper provides a brief discussion of the entries provided in the tabular listings as well as the accuracy of CG height measurements.
Technical Paper

Vehicle Dynamics Modeling and Validation for the 2003 Ford Expedition with ESC using ADAMS View

2009-04-20
2009-01-0453
The paper discusses the development of a model of the 2003 Ford Expedition using ADAMS View and its validation with experimental data. The front and rear suspensions are independent double A-arm type suspensions modeled using rigid links and ideal joints. The suspension springs and shock absorbers are modeled as force elements. The plots comparing the experimental tests and the simulation results are shown in this paper. Quasi-static roll and bounce tests are used to validate the suspension characteristics of the model while the Sine with Dwell and Slowly Increasing Steer maneuvers are used to validate the vehicle handling and tire-road interaction characteristics of the model. This paper also details the incorporation of an ESC model, originally developed by Kinjawadekar et al. [2] for CarSim, with the ADAMS model. The ESC is modeled in Simulink and co-simulated with the ADAMS vehicle model. Plots validating the ESC model with experimental data are also included.
Journal Article

Development of a Roll Stability Control Model for a Tractor Trailer Vehicle

2009-04-20
2009-01-0451
Heavy trucks are involved in many accidents every year and Electronic Stability Control (ESC) is viewed as a means to help mitigate this problem. ESC systems are designed to reduce the incidence of single vehicle loss of control, which might lead to rollover or jackknife. As the working details and control strategies of commercially available ESC systems are proprietary, a generic model of an ESC system that mimics the basic logical functionality of commercial systems was developed. This paper deals with the study of the working of a commercial ESC system equipped on an actual tractor trailer vehicle. The particular ESC system found on the test vehicle contained both roll stability control (RSC) and yaw stability control (YSC) features. This work focused on the development of a reliable RSC software model, and the integration of it into a full vehicle simulation (TruckSim) of a heavy truck.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

2012-04-16
2012-01-0241
A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
X