Refine Your Search

Search Results

Technical Paper

Experience in Development and Operation of Systems for Water Recovery from Humidity Condensate for Space Stations

The paper analyzes and summarizes experience in developing and flight operation of the system for potable water recovery from humidity condensate. The system schematic and its hardware are reviewed. The system performance data on Salut and Mir space stations are presented. Succession to the development of a similar system for the International Space Station (ISS) service module is shown.
Technical Paper

Systems for Water Reclamation from Humidity Condensate and Urine for Space Station

This paper deals with water reclamation from humidity condensate and urine schematics and processes realized on orbital space stations Salut and Mir. The results of research in updated processes and schematics for condensate separation, purification and distillation with heat energy recovery are described. It is shown that the processes and hardware make possible to reduce energy demand and the weight of the water recovery systems under operation on space stations.
Technical Paper

A Physical/Chemical System for Water and Atmosphere Recovery Aboard a Space Station

The paper deals with the problems of development of physico-chemical systems for water recovery and atmosphere revitalization for long-duration space stations. Schematics of regenerative life support systems featuring a high degree of closure and biotechnological components are presented. A year-long experiment has proved the possibility for Man to stay in a closed artificial environment for a long time by consuming substances regenerated by physico-chemical means from the end products of life. A complex of the life support systems (LSS) on Mir space station allowing for oxygen and 90% water recovery as well as its future updating is considered.
Technical Paper

Hydrodynamic and Heat-and-Mass Transfer Processes in Space Station Water Recovery Systems

The paper systematizes typical hydrodynamic and heat-and-mass transfer chemical engineering processes realized in water recovery systems. The impact of micro-gravity on the processes is analyzed and general principles of the process organization in gas/liquid fluids are described. As examples, some typical separation processes in a coccurred flow channel with liquid suction through a porous wall, liquid evaporation into a vapour/gas fluid and vapour condensation from the vapour/gas mixture are considered for water recovery systems. A versatile approach based on an extended analogy between friction, heat transfer and mass transfer and on limited relative laws of a boundary layer at the permeable surface is suggested for an analysis and calculation of the friction resistance of a two-phase flow, heat transfer and mass transfer on evaporation and condensation. Recommendations for an analysis of the influence of free convection are made.