Refine Your Search


Search Results

Technical Paper

Study on Auto-Ignition and Combustion Mechanism of HCCI Engine

In the HCCI (Homogeneous Charge Compression Ignition) engine, a mixture of fuel and air is supplied to the cylinder and auto-ignition occurs resulting from compression. This method can expand the lean flammability limit, realizing smokeless combustion and also having the potential for realizing low NOx and high efficiency. The optimal ignition timing is necessary in order to keep high thermal efficiency. The Ignition in the HCCI engine largely depends on the chemical reaction between the fuel and the oxidizer. Physical methods in conventional engines cannot control it, so a chemical method is demanded. Combustion duration is maintained properly to avoid knocking. In addition, the amount of HC and CO emissions must be reduced. The objective of this study is to clarify the following through calculations with detailed chemical reactions and through experiment with the 2-stroke HCCI engine: the chemical reaction mechanism, and HC and CO emission mechanisms.
Technical Paper

Effect of Temperature-Pressure Time History on Auto-Ignition Delay of Air-Fuel Mixture

When the compression ratio of the spark ignition engine is set high as a method of improving the fuel efficiency of passenger cars, it is often combined with the direct fuel injection system for knock mitigation. In port injection, there are also situations where the fuel is guided into the cylinder while the vaporization is insufficient, especially at the cold start. If the fuel is introduced into the cylinder in a liquid state, the temperature in the cylinder will change due to sensible heat and latent heat of the fuel during vaporization. Further, if the fuel is unevenly distributed in the cylinder, the effect of the specific heat is added, and the local temperature difference is expanded through the compression process. In this research, an experiment was conducted using a rapid compression machine for the purpose of discussing the effect of the temperature-pressure time history of fuel on ignition delay time.
Technical Paper

Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation

To analyze the combustion mechanism of the so-called Active Thermo-Atmosphere Combustion (ATAC) in a two-stroke S.I. engine, a measuring system to obtain images of radical luminescence in the combustion chamber was developed. The ATAC engine tested was equipped with a quartz windows as the cylinder head. The instantaneous luminescence from radical species was observed using an image intensifier with a single band pass filter for both conventional and ATAC operating conditions. At ATAC operation, emissions from OH radicals were observed before heat release began, and after that, emissions from CH were observed. It was found that the ignition was initiated over the entire area of the combustion chamber and “bulk-like” and/or “non propagating” combustion occurred during ATAC engine operation.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

Effects of High-Pressure Fuel Injection and a Micro-Hole Nozzle on Combustion in a Rapid Compression Machine

High pressure fuel injection and a micro-hole nozzle were used with a rapid compression machine to study soot and nitrogen oxide reduction by creating a uniform and lean fuel distribution in the combustion chamber. The rapid compression machine was optically accessible, which allowed high-speed photography and subsequent two-color flame temperature and soot concentration measurements to be made. In addition, band spectrum radical luminescence images were also observed.
Technical Paper

Simulation Study of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Propane

A simulation study was conducted to examine the transition from SI combustion to HCCI combustion in a two-stroke free piston engine fuelled with propane. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. The dynamic model included an analysis of the piston motion, based on Newton's second law. The linear alternator model included an analysis of electromagnetic force, which was considered to be a resistance force for the piston motion. The thermodynamic model was used to analysis thermodynamic processes in the engine cycle, including scavenging, compression, combustion, and expansion processes. Therein, the scavenging process was assumed to be a perfect process. These mathematical models were combined and solved by a program written in Fortran.
Technical Paper

Combustion Analysis of Natural Gas in a Four Stroke HCCI Engine Using Experiment and Elementary Reactions Calculation

Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion regime in terms of high thermal efficiency and low emissions. It is difficult to control autoignition and combustion because they are controlled primarily by the chemical kinetics of air/fuel mixture. In this study, it was investigated the characteristics of autoignition and combustion of natural gas in a four-stroke HCCI engine using experiment and elementary reactions calculation. The influence of equivalence ratio, intake temperature, intake pressure and engine speed on autoignition timing, autoignition temperature, combustion duration and the emissions of THC, CO, CO2 were investigated. And also, to clarify the influence of n-butane on autoignition and combustion of natural gas, it was changed the blend ratio of n-butane from 0 mol% to 10 mol% in methane / n-butane / air mixtures.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

An Investigation on the Auto-Ignition of Fuel-Air Mixture Induced by Release of Oil-Fuel Droplets from Cylinder-Liner Using Multi-Zone Model

This study investigated effects of gas inhomogeneity induced by droplets of fuels and oils on the auto ignition timing and temperature in the direct-injection spark ignition (DISI) engine by means of detailed numerical calculation using multi zone model. Recent researchers pointed out that droplets are made of fuels and oils which mix on the cylinder liner and released from the cylinder liner [1]. During the compression stroke released droplets reach the auto ignition temperature before flame propagation induced by spark ignition. It is called Pre-ignition. In combustion chamber, there is inhomogeneity caused by temperature and mixture distribution. In this study, the effects of gas inhomogeneity produced by droplet on the auto ignition timing and temperature have been investigated using Multi-Zone model of CHEMKIN-PRO by changing initial temperature and initial equivalence ratio. Especially, the volume of first ignition zone is focused on.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Technical Paper

Model-Based Combustion Control of a HCCI Engine using External EGR and the Exhaust Rebreathed

To approach realization of Homogeneous Charge Compression Ignition (HCCI) combustion without external combustion ignition trigger, it is necessary to construct HCCI engine control system. In this study, HCCI research engine equipped with the EGR passage for external EGR and the two-stage exhaust cam for exhaust rebreathed. This system can control the mixing ratio of four gases (air, fuel, rebreathed EGR gas, external EGR gas) of in-cylinder by operating four throttles and fuel injection duration while maintaining acceptable pressure rise rate (PRR) and cycle-to-cycle variation of Indicated Mean Effective Pressure (IMEP), closed-loop control system designed by applying feedback variables (equivalence ratio, combustion-phasing, IMEP) for feedback control. Those control inputs (four throttles and fuel injection) has correlation mutually, control inputs cause interference, response become low and hunching occurs.
Technical Paper

An Investigation of the Potential of EGR stratification for Reducing Pressure Rise Rate in HCCI Combustion by using Rapid Compression Machine

HCCI (Homogeneous Charge Compression Ignition) engine is able to achieve low NOx and particulate emissions as well as high efficiency. However, its operation range is limited by the knocking at high load, which is the consequence of excessively rapid pressure rises. It has been suggested that making thermal or fuel inhomogeneities can be used to solve this problem, since these inhomogeneities have proved to create different auto-ignition timing zones. It has also been suggested that EGR (Exhaust Gas Recirculation) has a potential to reduce pressure rise rate. But according to a past report, it was concluded that under the same fueling ratio and CA50 with different initial temperature and EGR ratio, the maximum PRR is almost constant. The purpose of this study is to investigate the fundamental effects of EGR. First, I considered EGR homogeneous charge case. In this case, the effects of EGR and its components like CO₂, H₂O or N₂ on HCCI combustion process is argued.
Technical Paper

Ignition Experiments by Nanosecond Repetitively Pulsed Discharges in Intense Turbulence for Super Lean Burn at Engine Condition

Ignition by Nanosecond Repetitively Pulsed Discharges (NRPD) at EXponential Increase of Minimum Ignition Energy (MIE-EXI) region under super lean SI engine conditions was studied. Fundamental experiments were conducted with a turbulent ignition test chamber with twin counter-rotating fans. The MIE-EXI region by arc discharge appeared over 6500 rpm of fan speed. In the MIE-EXI region (7000 rpm), successful ignition was achieved by establishing coupled ignition kernels with NRPD at 15 kHz although ignition was unsuccessful at 1 kHz. Results show that ignition by NRPD has potential advantages for lean burn applications. Preliminary engine test results with NRPD were also demonstrated.