Refine Your Search


Search Results

Technical Paper

Numerical Assessment of Controlling the Interval between Two Heat-Release Peaks for Noise Reduction in Split-injection PCCI Combustion

In PCCI combustion with multiple injections, the mechanism having two heat release peaks which has a favorable characteristic of reducing noise is studied using numerical tool of single- and also multi-zone model of CHEMKIN PRO. In the present investigation, the physical issues, such as variations in the equivalent ratio and temperature caused by the fuel injection are simplified first so that the key issues of chemical reaction occurred in the combustion chamber can be extracted and are discussed in detail. The results show that the interval of two heat-release peaks can be controlled and as the number of zones of the calculation increases, the change in the timing of a heat release peak is increased but over three-zones, it is not affected any more. This indicates that to study about complex diesel combustion phenomena, three-to four-zone model shall give sufficiently accurate results.
Technical Paper

An Investigation of the Effects of Fuel Concentration Inhomogeneity on HCCI Combustion -Fuel Concentration of Pre-Mixture Using LIF measurement-

HCCI (Homogeneous Charge Compression Ignition) engine has a problem which causes knocking when the maximum PRR (Pressure Rise Rate) reaches a certain level because it takes the form of combustion of simultaneous multi-point ignition by compression of the air-fuel pre-mixture. This study focused on stratified charge of fuel in combustion chamber. This method disperses the timing of local ignition. The distribution of fuel concentration is measured by using LIF (Laser Induced Fluorescence). As a result, the maximum PRR is reduced by stratified charge of fuel. In addition, it is confirmed that the dispersion of combustion timing depends on the dispersion of fuel concentration.
Technical Paper

Effects of High-Pressure Fuel Injection and a Micro-Hole Nozzle on Combustion in a Rapid Compression Machine

High pressure fuel injection and a micro-hole nozzle were used with a rapid compression machine to study soot and nitrogen oxide reduction by creating a uniform and lean fuel distribution in the combustion chamber. The rapid compression machine was optically accessible, which allowed high-speed photography and subsequent two-color flame temperature and soot concentration measurements to be made. In addition, band spectrum radical luminescence images were also observed.
Technical Paper

Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation

To analyze the combustion mechanism of the so-called Active Thermo-Atmosphere Combustion (ATAC) in a two-stroke S.I. engine, a measuring system to obtain images of radical luminescence in the combustion chamber was developed. The ATAC engine tested was equipped with a quartz windows as the cylinder head. The instantaneous luminescence from radical species was observed using an image intensifier with a single band pass filter for both conventional and ATAC operating conditions. At ATAC operation, emissions from OH radicals were observed before heat release began, and after that, emissions from CH were observed. It was found that the ignition was initiated over the entire area of the combustion chamber and “bulk-like” and/or “non propagating” combustion occurred during ATAC engine operation.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

An Investigation on the Auto-Ignition of Fuel-Air Mixture Induced by Release of Oil-Fuel Droplets from Cylinder-Liner Using Multi-Zone Model

This study investigated effects of gas inhomogeneity induced by droplets of fuels and oils on the auto ignition timing and temperature in the direct-injection spark ignition (DISI) engine by means of detailed numerical calculation using multi zone model. Recent researchers pointed out that droplets are made of fuels and oils which mix on the cylinder liner and released from the cylinder liner [1]. During the compression stroke released droplets reach the auto ignition temperature before flame propagation induced by spark ignition. It is called Pre-ignition. In combustion chamber, there is inhomogeneity caused by temperature and mixture distribution. In this study, the effects of gas inhomogeneity produced by droplet on the auto ignition timing and temperature have been investigated using Multi-Zone model of CHEMKIN-PRO by changing initial temperature and initial equivalence ratio. Especially, the volume of first ignition zone is focused on.
Technical Paper

Model-Based Combustion Control of a HCCI Engine using External EGR and the Exhaust Rebreathed

To approach realization of Homogeneous Charge Compression Ignition (HCCI) combustion without external combustion ignition trigger, it is necessary to construct HCCI engine control system. In this study, HCCI research engine equipped with the EGR passage for external EGR and the two-stage exhaust cam for exhaust rebreathed. This system can control the mixing ratio of four gases (air, fuel, rebreathed EGR gas, external EGR gas) of in-cylinder by operating four throttles and fuel injection duration while maintaining acceptable pressure rise rate (PRR) and cycle-to-cycle variation of Indicated Mean Effective Pressure (IMEP), closed-loop control system designed by applying feedback variables (equivalence ratio, combustion-phasing, IMEP) for feedback control. Those control inputs (four throttles and fuel injection) has correlation mutually, control inputs cause interference, response become low and hunching occurs.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

An Investigation of the Potential of EGR stratification for Reducing Pressure Rise Rate in HCCI Combustion by using Rapid Compression Machine

HCCI (Homogeneous Charge Compression Ignition) engine is able to achieve low NOx and particulate emissions as well as high efficiency. However, its operation range is limited by the knocking at high load, which is the consequence of excessively rapid pressure rises. It has been suggested that making thermal or fuel inhomogeneities can be used to solve this problem, since these inhomogeneities have proved to create different auto-ignition timing zones. It has also been suggested that EGR (Exhaust Gas Recirculation) has a potential to reduce pressure rise rate. But according to a past report, it was concluded that under the same fueling ratio and CA50 with different initial temperature and EGR ratio, the maximum PRR is almost constant. The purpose of this study is to investigate the fundamental effects of EGR. First, I considered EGR homogeneous charge case. In this case, the effects of EGR and its components like CO₂, H₂O or N₂ on HCCI combustion process is argued.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Technical Paper

Investigation of Cycle-to-Cycle Variation of Turbulent Flow in a High-Tumble SI Engine

The thermal efficiency of a spark-ignition (SI) engine must be improved to reduce both environmental load and fuel consumption. Although lean SI engine operation can strongly improve thermal efficiency relative to that of stoichiometric SI operation, the cycle-to-cycle variation (CCV) of combustion increases with the air dilution level. Combustion CCV is caused by CCVs of many factors, such as EGR, spark energy, air-fuel ratio, and in-cylinder flow structure related to engine speed. This study focuses on flow structures, especially the influence of a tumble structure on flow fluctuation intensity near ignition timing. We measured the flow field at the vertical center cross section of an optically accessible high-tumble flow engine using time-resolved particle image velocimetry. There are many factors considered to be sources of CCV, we analyzed three factors: the intake jet distribution, distribution of vortex core position and trajectory of the fluid particle near the spark plug.
Technical Paper

Effect of Temperature-Pressure Time History on Auto-Ignition Delay of Air-Fuel Mixture

When the compression ratio of the spark ignition engine is set high as a method of improving the fuel efficiency of passenger cars, it is often combined with the direct fuel injection system for knock mitigation. In port injection, there are also situations where the fuel is guided into the cylinder while the vaporization is insufficient, especially at the cold start. If the fuel is introduced into the cylinder in a liquid state, the temperature in the cylinder will change due to sensible heat and latent heat of the fuel during vaporization. Further, if the fuel is unevenly distributed in the cylinder, the effect of the specific heat is added, and the local temperature difference is expanded through the compression process. In this research, an experiment was conducted using a rapid compression machine for the purpose of discussing the effect of the temperature-pressure time history of fuel on ignition delay time.
Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.