Refine Your Search

Topic

Search Results

Technical Paper

Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas

2007-01-23
2007-01-0015
Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn approach may not be sufficient for future emissions legislation. One way to improve the lean burn strategy is to add hydrogen to the fuel to increase the lean limit and thus reduce the NOx formation without increasing the emissions of HC. Even so, the best commercially available technology for low emissions of NOx, HC and CO today is stoichiometric operation with a three-way catalyst as used in passenger cars.
Technical Paper

Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst

2005-04-11
2005-01-0250
Exhaust Emissions from lean burn natural gas engines may not always be as low as the potential permits, especially engines with open loop lambda control. These engines can produce much higher emissions than a comparable diesel engine without exhaust gas after treatment. Even if the engine has closed loop lambda control, emissions are often unacceptably high for future emission regulations. A three way catalyst is, today, the best way to reduce hazardous emissions. The drawback is that the engine has to operate with a stoichiometric mixture and this leads to; higher heat losses, higher pumping work at low to medium loads, higher thermal stress on the engine and higher knock tendency (requiring lower compression ratio, and thus lower brake efficiency). One way to reduce these drawbacks is to dilute the stoichiometric mixture with EGR. This paper compares lean burn operation with operation at stoichiometric conditions diluted with EGR, and using a three way catalyst.
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

Ion Current Sensing for HCCI Combustion Feedback

2003-10-27
2003-01-3216
Measurement of ion current signal from HCCI combustion was performed. The aim of the work was to investigate if a measurable ion current signal exists and if it is possible to obtain useful information about the combustion process. Furthermore, influence of mixture quality in terms of air/fuel ratio and EGR on the ion current signal was studied. A conventional spark plug was used as ionization sensor. A DC voltage (85 Volt) was applied across the electrode gap. By measuring the current through the gap the state of the gas can be probed. A comparison between measured pressure and ion current signal was performed, and dynamic models were estimated by using system identification methods. The study shows that an ion current signal can be obtained from HCCI combustion and that the signal level is very sensitive to the fuel/air equivalence ratio.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

2003-03-03
2003-01-0717
Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine

2003-03-03
2003-01-0743
This paper discusses the effects of cooled EGR on a turbo charged multi cylinder HCCI engine. A six cylinder, 12 liter, Scania D12 truck engine is modified for HCCI operation. It is fitted with port fuel injection of ethanol and n-heptane and cylinder pressure sensors for closed loop combustion control. The effects of EGR are studied in different operating regimes of the engine. During idle, low speed and no load, the focus is on the effects on combustion efficiency, emissions of unburned hydrocarbons and CO. At intermediate load, run without turbocharging to achieve a well defined experiment, combustion efficiency and emissions from incomplete combustion are still of interest. However the effect on NOx and the thermodynamic effect on thermal efficiency, from a different gas composition, are studied as well. At high load and boost pressure the main focus is NOx emissions and the ability to run high mean effective pressure without exceeding the physical constraints of the engine.
X