Refine Your Search



Search Results

Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Predictions of Cyclic Variability in an SI Engine and Comparisons with Experimental Data

An investigation of cyclic variability in a spark ignition engine is reported. Specifically, the predictions of an engine code have been compared with experimental data obtained using a well-characterized SI engine. The engine used for the experimental work and modeled in the code is the single cylinder research engine developed at Sandia National Laboratories and now operating at Drexel University. The data used for comparison were cylinder pressure histories for 110 engine cycles gathered during operation at a single engine operating condition. The code allows the various factors that could influence cyclic variability to be examined independently. Specifically, a model has been used to independently examine the effects of variations in equivalence ratio and of the turbulence intensity on cycle-to-cycle variations in the peak cylinder pressure, the crankangle of occurrence of peak pressure, the flame development angle, and the rapid burning angle.
Technical Paper

Development and Application of an Improved Ring Pack Model for Hydrocarbon Emissions Studies

Because only the unburned gases in the crevices can contribute to hydrocarbon emissions, a model was developed that can be used to determine the temporal and spatial histories of both burned gas and unburned gas flow into and out of the piston-liner crevices. The burned fraction in the top-land is primarily a function of engine design. Burned gases continue to get packed into the inter-ring volume until well after the end of combustion and the unburned fuel returned to the chamber from this source depends upon both the position of the top ring end gap relative to the spark plug and of the relative positions of the end gaps of the compression rings with respect to each other. Because the rings rotate, and because the fuel that returns to the chamber from the inter-ring crevice dominates the sources between BDC and IVO when conditions are unfavorable to in-cylinder oxidation, these represent two sources of variability in the HC emissions.
Technical Paper

Examination of the Factors that Influence the Durability of Railplugs

A new type of ignitor, the railplug, shows promise of extending the dilution limits for spark ignition engines. While much of the effort expended in our study of railplugs has focused upon demonstrating their effectiveness, it is recognized that railplug durability is presently not acceptable for production engine applications. The goal of the present study was to examine the factors that affect durability. The results of two types of investigations are reported. The effects of rail materials, pressure, delivered energy, and voltage at constant delivered energy on electrode erosion rates were studied for repeated firings in air at constant pressure. Railplug durability in a four-stroke SI engine was also evaluated, including examination of the effects of delivered energy, current pulse characteristics, and materials.
Technical Paper

Initial Study of Railplugs as an Aid for Cold Starting of Diesels

The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet of plasma. Additionally, railplugs have the potential of assuring ignition under adverse conditions, such as cold start of an IDI diesel engine, because the railplug plasma can force ignition in the combustion chamber rather than relying on autoignition under cold start conditions. In this paper, engine data are presented to demonstrate the improved cold starting capability obtainable with railplugs. Data acquired using a railplug are compared to results obtained using no assist and using glow plugs. The engine used for this investigation will not start without glow plugs (or some starting aid) at temperatures below O°C, and the manufacturer's specification of the cold start limit for this engine using glow plugs is -24°C. Railplugs are able to initiate combustion at -29°C in one to two seconds with no preheating.
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Development of a Semi-Detailed Kinetics Mechanism for the Autoignition of Iso-Octane

A reduced autoignition mechanism for iso-octane has been developed by identifying paths to formation of the stable species measured during motoring knock experiments and eliminating paths to formation of species that were not measured. The resulting mechanism includes low-, intermediate-, and high-temperature reactions and consists of 103 species and 131 reactions. This mechanism differs from detailed models not only in the number of reactions and species, but most importantly, in the nature and rates of the degenerate chain branching reactions. To implement this mechanism, a knock subroutine has been added to a quasidimensional spark ignition engine model that accounts for heat losses, blowby, etc. Thus, errors in the reactivity predictions can be assigned almost exclusively to the kinetics. Numerical predictions of the exhaust composition during motoring knock are compared with experimental measurements as a function of compression ratio for several operating conditions.
Technical Paper

The Texas Project: Part 2 - Control System Characteristics of Aftermarket CNG and LNG Conversions for Light-Duty Vehicles

The Texas Project involves the conversion of light-duty vehicles, up to and heavy light-duty trucks, to bi-fueled vehicles using commercially available aftermarket CNG and LPG conversion systems. The test fleet includes 68 dual fueled conversions. Virtually every type of aftermarket conversion technology for CNG and LPG was evaluated: eight different CNG and seven different LPG conversion “kits”, all of which are modern systems incorporating closed-loop control. The kits were installed and calibrated according to the manufacturer's guidelines and recommendations. The emissions when operating on the alternative fuel were compared to those when operating on certification gasoline to determine the “success” of the conversion. Many of these conversions, performed according to the manufacturer's requirements, were not “successful” (worse emissions than for gasoline operation). In almost all cases, the problem was NOx emissions that were too high when operating on the alternative fuel.
Technical Paper

The Texas Project: Part 3 - Off-Cycle Emissions of Light-Duty Vehicles Operating on CNG, LPG, Federal Phase 1 Reformulated Gasoline, and/or Low Sulfur Certification Gasoline

Off-cycle emissions from seven different types of 1994 light-duty vehicles were examined The test fleet consisted of 19 individual vehicles including a passenger car, two makes of light light-duty trucks, and five types of heavy light-duty trucks The driving cycles used for these tests were the US06(hard acceleration, high speed) cycle and the 20 °F FTP (the “Cold FTP”) Conventional FTPs were done for comparison Each vehicle was usually operated on at least two of the following CNG, LPG, Federal Phase 1 reformulated gasoline (FP1 RFG), and a low sulfur certification gasoline For both the conventional FTP and the US06 cycles, the alternative fuels produce statistically significant benefits in Ozone Forming Potential and exhaust toxics but the NOx emissions are not statistically different from those when operating on FP1 RFG with at least 90% confidence During Cold FTP tests, the emissions of CO and of toxics when operating on FP1 RFG are not statistically different from those when operating on a low sulfur certification gasoline In contrast the alternative fuels produce statistically significant benefits in the emissions of both CO and toxics compared to either of the gasolines during Cold FTP tests The Reactivity Adjustment Factor calculated from the present conventional FTP results for CNG agrees closely with the CARB value However, the present RAF for LPG is about half CARB s value, which is believed to be a consequence of the low propene in Texas LPG compared to the high propene in California LPG The effects of the test type on the emissions are also discussed
Technical Paper

CNG Compositions in Texas and the Effects of Composition on Emissions, Fuel Economy, and Driveability of NGVs

A survey of the CNG compositions within NGV driving range of Houston was performed. It was found that the statistics for the Texas CNGs were very similar to those from a previous national survey Based upon the present survey results, two extremes of CNG composition were chosen for a study of the effects of composition on emissions, fuel economy, and driveability. Two other CNG compositions were also included to provide for comparisons with the recently completed Auto/Oil Air Quality Improvement Research Program (AQIRP) and to extend the AQIRP database. One of the vehicles used in the AQIRP study was also used in the present investigation. Correlations were investigated for the relationships between the CNG composition and tailpipe emissions, fuel economy, and driveability.
Technical Paper

The Texas Project: Part 1 - Emissions and Fuel Economy of Aftermarket CNG and LPG Conversions of Light-Duty Vehicles

The Texas Project is a multi-year study of the emissions and fuel economy of aftermarket conversions of light-duty vehicles, including passenger cars, light light-duty trucks, and heavy light-duty trucks. The test fleet, consisting of 86 mostly 1994 model year vehicles, includes eight different types of light-duty vehicles that have been converted to dual fueled operation for either CNG or LPG and corresponding gasoline controls. Virtually every type of aftermarket conversion technology (referred to as a “kit” for convenience) is represented in the test matrix: eight different CNG kits and seven different LPG kits, all of which have closed loop control systems. One goal of The Texas Project is to evaluate the different kits for each of the applications. One method used for evaluating the different kits was by assessing their potential for attaining LEV certification for each of the vehicle applications.
Technical Paper

A Multidimensional Numerical Model for Turbulent Premixed Flames with Fractal Geometries

We present a multidimensional numerical model that calculates turbulent premixed flame propagation, assuming the flames have fractal geometries. Two scaling transformations, previously developed for laminar flames, are used to incorporate the fractal burning model in KIVA-II1, a numerical hydrodynamics code for chemically reactive flows. In this work the model is implemented for propane/air mixtures. For applications to internal combustion engines, we have also developed a fractal model for early flame kernel growth. Our multidimensional model can be used in experimental comparisons to test postulated fractal parameters, and we begin this task by comparing calculated results with measurements of propane/air combustion in a spark ignition engine. Good agreement is obtained between computed and measured flame positions and pressures in all cases except a low engine speed case.
Technical Paper

Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines During Cold Start

Condensation of fuel vapor on the cold surfaces within the combustion chamber is investigated as a possible mechanism for increased HC emissions from SI engines during cold start. A one-dimensional, transient, mass diffusion analysis is used to examine the condensation of single-species fuels on the surfaces of the combustion chamber as the pressure within the cylinder rises during compression and combustion, and re-vaporization during expansion, blowdown, and exhaust. The effects of wall temperature, fuel volatility, and engine load and speed on this mechanism are also discussed. This analysis shows that low-volatility fuel components can condense on the surfaces of the combustion chamber when the surface temperatures are sufficiently low. This condensed fuel may re-vaporize during the power and exhaust strokes, or it may remain in the combustion chamber until surface temperatures rise, perhaps tens of seconds later.
Technical Paper

The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System

A liquid-phase port injection system for liquefied petroleum gas (LPG) generally consists of a fuel storage tank with extended capability of operating up to 600 psi, a fuel pump, and suitable fuel lines to and from the LPG fuel injectors mounted in the fuel rail manifold. Port injection of LPG in the liquid phase is attractive due to engine emissions and performance benefits. However, maintaining the LPG in the liquid phase at under-hood conditions and re-starting after hot soak can be difficult. Multiphase behavior within a liquid-phase LPG injection system was investigated computationally and experimentally. A commercial chemical equilibrium code (ASPEN PLUS™) was used to model various LPG compositions under operating conditions.