Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Catalyst Aging and Effects on Particle Emissions of 2-Stroke Scooters

2008-04-14
2008-01-0455
An active oxidation catalyst is an efficient measure to reduce not only gaseous components (CO, HC), but also particle emissions (mostly oil condensates) of a small 2-stroke engine with lost oil lubrication. Since the 2- and 3-wheelers with 2-stroke propulsion are still a very serious source of air pollution worldwide in many urban areas, it is important to have a look on some consequences of an improperly working catalyst. The present paper shows some results of user-oriented aging of catalyst on the vehicle and results of limited emissions and unlimited (nano)particles during the catalysts screening tests. The works are a part of an international scooter network project, which was performed (2004 to 2007) in the Laboratories for IC-Engines & Exhaust Emission Control of the University of Applied Sciences, Biel, Switzerland with main support of the Swiss Federal Office of Environment (BAFU), Swiss Petrol Union (EV) and Swiss Lubes (VSS).
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

DI Boost: Application of a High Performance Gasoline Direct Injection Concept

2007-04-16
2007-01-1410
The development of engines with high specific output and low specific fuel consumption is now more than ever becoming the main focus for powertrain product development. A combination of two primary factors is driving this demand: increased fuel cost and stricter government regulations. As worldwide fuel prices continue to increase, consumers are shifting their purchasing toward more fuel-efficient vehicles. Also fueling the demand is new federal corporate average fuel economy (CAFÉ) regulations that are in place for the timeframe from 2008 to 2011. One concept to provide both high specific output and low specific fuel consumption is the combination of turbocharging and gasoline direct fuel injection. This is an attractive concept for the North American market where sport utility vehicles, light trucks and sports cars of all sizes are in demand from consumers.
Technical Paper

(Nano) Particles from 2-S Scooters: SOF / INSOF; Improvements of Aftertreatment; Toxicity

2007-04-16
2007-01-1089
Limited and non-regulated emissions of scooters were analysed during several annual research programs of the Swiss Federal Office of Environment (BAFU) *). Small scooters, which are very much used in the congested centers of several cities, are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburettor were performed. The nanoparticulate emissions were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for SOF/INSOF, PAH and toxicity equivalence (TEQ), were carried out in an international project network. Particle mass emission (PM) of 2-S Scooters consists mostly of SOF.
Technical Paper

Diesel NO/NO2/NOX Emissions - New Experiences and Challenges

2007-04-16
2007-01-0321
During the VERT *) testing of different DPF systems it was remarked, that the oxidation catalyst converts sometimes a big part of NO to NO2, producing on the one hand a more toxic composition of the exhaust gases and causing on the other hand measuring artefacts, which tend to underestimate of NO2 and NOx by the cold NOx - measurement. The present work summarizes the experiences in this matter elaborated at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during several VERT activities and didactic projects on engine and chassis dynamometers in the years 2000-2006.
Technical Paper

Research on Particle Emissions of Modern 2-Stroke Scooters

2006-04-03
2006-01-1078
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for PAH & SOF/INSOF, as well as for VOC were carried out in an international project network.
Technical Paper

Features of the Particulate Emission and Regenerations of Different DPF's on a Detroit Diesel 2-Stroke Bus Engine

2004-03-08
2004-01-0825
Different Diesel Particle Filters (DPF)*) were tested on a 2-Stroke Detroit-Diesel bus engine 6V 92 TA. The investigations focused on soot burden and regeneration of the DPF with special filter materials. Also examined was promoting the regeneration by: throttling, additive (FBC), oxidation catalytic converter upstream of DPF and the catalytic coating of the filter material. The metrics were the particulate matter emission, its composition and the nanoparticles. The most important results are: The average SOF content in the engine exhaust particulate matter is 77.6 % and the majority of it is emitted as bigger droplets The wire-mesh filter catalyst (WFC) - a novel emission reduction technology -substantially curtails the SOF and PM. WFC traps and oxidizes the oil droplets and produces a “dry” soot. This can be very advantageous for the DPF downstream of WFC. (WFC can be also very interesting for 2-S gasoline engines).
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Gasoline Direct Injection - SULEV Emission Concept

2004-03-08
2004-01-0041
Gasoline Direct Injection (GDI) engines can play an important role in future powertrain concepts. They show potential for enhanced fuel economy and at the same time fulfill demands for higher specific power output. For a successful placement in the NAFTA market especially against other competing concepts such as the gasoline port fuel injection engine and the Diesel engine, GDI has to demonstrate its ability to meet existing and future emission legislation. This contribution demonstrates GDI as a low emission concept. It proposes a reliable and efficient cold-start strategy called “High-Pressure Stratified Start”. Fuel is injected by means of increased fuel pressure during compression stroke instead of the conventional start with low-pressure fuel injection during intake stroke. Consequently, mixture preparation is greatly enhanced and wall wetting is reduced. The high-pressure start produces less unburned hydrocarbon emissions and enhances start reliability at low temperatures.
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
Technical Paper

Influences of Gas Quality on a Natural Gas Engine

2001-03-05
2001-01-1194
1 The topic of investigation of this work was the influence of different gas qualities on the engine parameters and particularly on the air excess factor λ. For this research the normalized gases with extreme compositions were used. At stationary operation there are no differences of the leaning capability of the different gases. The gas with the highest content of inert components causes the lowest full load power, the highest fuel consumption and the highest cyclic irregularity. With the same air flow and the same injection duration for different gases result different air excess factors λ according to the density and to the necessary stoichiometric air quantity of each gas. This fact influences the λ at transient operation conditions as: cold starting, gas quality jump, or load increase, if there is no λ-control. With an active λ-control, which is today fast enough, especially with an adaptive system there are no problems with λ- differences.
Technical Paper

Oscillatory Combustion and Knocking in SI-Engines with Divided Combustion Chambers

1985-02-01
850045
By the intense inflammation and high combustion rates in the spark ignition engine oscillatory combustion is formed, similarly to the diesel engine. The oscillation is particularly marked in the engines with divided combustion chamber, due to the rapid combustion caused by the turbulence generated in the prechamber nozzles. Oscillatory combustion and knocking are two different phenomena with different causes. It will be tried in this paper to clarify the reasons of formation of pulsating combustion and the parameters which influence it. Also the differences between the oscillatory combustion and knocking in the gasoline engines and the influence of turbulence on knocking will be shown.
X