Refine Your Search

Topic

Search Results

Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2016-11-08
CURRENT
J2561_201611
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

File Structures for a Node Capability File (NCF)

2010-10-04
WIP
J2602/3
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers and vehicle system engineers.
Standard

File Structures for a Node Capability File (NCF)

2010-01-07
CURRENT
J2602/3_201001
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers and vehicle system engineers.
Standard

Communication Transceivers Qualification Requirements - LIN

2019-07-18
CURRENT
J2962/1_201907
This document covers the requirements for transceiver qualification. Requirements stated in this document will provide a minimum standard level of performance for the LIN transceiver block in the IC to which all compatible transceivers shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices regardless of supplier. The goal of SAE J2962-1 is to commonize approval processes of LIN transceivers across OEMs. The intended audience includes, but is not limited to, LIN transceiver suppliers, component release engineers, and vehicle system engineers.
Standard

Communication Transceivers Qualification Requirements - CAN

2019-07-18
CURRENT
J2962/2_201907
This document covers the requirements for transceiver qualification. Requirements stated in this document will provide a minimum standard level of performance for the CAN transceiver in the IC to which all compatible transceivers shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices, regardless of supplier. The goal of SAE J2962-2 is to commonize approval processes of CAN transceivers across OEMs. The intended audience includes, but is not limited to, CAN transceiver suppliers, component release engineers, and vehicle system engineers.
Standard

Selection of Transmission Media

2000-02-23
CURRENT
J2056/3_200002
This SAE Information Report studies the present transmission media axioms and takes a fresh look at the Class C transmission medium requirements and also the possibilities and limitations of using a twisted pair as the transmission medium. The choice of transmission medium is a large determining factor in choosing a Class C scheme.
Standard

Survey of Known Protocols

2000-02-17
CURRENT
J2056/2_200002
This SAE Information Report is a summary comparison of existing protocols found in manufacturing, automotive, aviation, military, and computer applications which provide background or may be applicable for Class C application. The intent of this report is to present a summary of each protocol, not an evaluation. This is not intended to be a comprehensive review of all applicable protocols. The form for evaluation of a protocol exists in this paper and new protocols can be submitted on this form to the committee for consideration in future revisions of this report. This report contains a table which provides a side-by-side comparison of each protocol considered. The subsequent section provides a more detailed examination of the protocol attributes. Many of the protocols do not specify a method for one or more of the criteria. In these circumstances 'under defined' or 'not specified' will appear under the heading.
Standard

Class C Application Requirement Considerations

2000-02-17
CURRENT
J2056/1_200002
This SAE Recommended Practice will focus on the requirements of Class C applications. The requirements for these applications are different from those required for either Class A or Class B applications. An overall example is provided for consistency of discussion. Cancelled due to lack of interest.
Standard

Survey of Known Protocols

1993-04-01
HISTORICAL
J2056/2_199304
This SAE Information Report is a summary comparison of existing protocols found in manufacturing, automotive, aviation, military, and computer applications which provide background or may be applicable for Class C application. The intent of this report is to present a summary of each protocol, not an evaluation. This is not intended to be a comprehensive review of all applicable protocols. The form for evaluation of a protocol exists in this paper and new protocols can be submitted on this form to the committee for consideration in future revisions of this report. This report contains a table which provides a side-by-side comparison of each protocol considered. The subsequent section provides a more detailed examination of the protocol attributes. Many of the protocols do not specify a method for one or more of the criteria. In these circumstances 'under defined' or 'not specified' will appear under the heading.
Standard

Class C Application Requirement Considerations

1993-06-01
HISTORICAL
J2056/1_199306
This SAE Recommended Practice will focus on the requirements of Class C applications. The requirements for these applications are different from those required for either Class A or Class B applications. An overall example is provided for consistency of discussion.
Standard

Token Slot Network for Automotive Control

1996-10-01
HISTORICAL
J2106_199610
The Token Slot Data Link is intended to provide periodic, broadcast communications (communication that must occur on a regular, predetermined basis) within a vehicle system. The Token Slot protocol achieves this by implementing a masterless, deterministic, non-contention Token Slot sequence which is designed to offer a transmit token to all devices (or nodes) without requiring that they respond. After acquiring the token, messages may be sent and verified using a variety of built-in techniques. The token passing slot sequence is then reinitiated by the current token holder.
Standard

Token Slot Network for Automotive Control

1991-04-29
HISTORICAL
J2106_199104
The Token Slot Data Link is intended to provide periodic, broadcast communications (communication that must occur on a regular, predetermined basis) within a vehicle system. The Token Slot protocol achieves this by implementing a masterless, deterministic, non-contention Token Slot sequence which is designed to offer a transmit token to all devices (or nodes) without requiring that they respond. After acquiring the token, messages may be sent and verified using a variety of built-in techniques. The token passing slot sequence is then reinitiated by the current token holder. Vehicle Architecture for Data Communication Standards Committee voted to cancel document - 7/19/2002 J2058 and J2106 Rationale Per Jack Volk, Vice Chairperson of Vehicle Architecture for Data Communication Standards Committee, document not being used. Information may be contained in other documents, (not necessarily SAE documents).
Standard

Token Slot Network for Automotive Control

2002-07-25
CURRENT
J2106_200207
The Token Slot Data Link is intended to provide periodic, broadcast communications (communication that must occur on a regular, predetermined basis) within a vehicle system. The Token Slot protocol achieves this by implementing a masterless, deterministic, non-contention Token Slot sequence which is designed to offer a transmit token to all devices (or nodes) without requiring that they respond. After acquiring the token, messages may be sent and verified using a variety of built-in techniques. The token passing slot sequence is then reinitiated by the current token holder. Vehicle Architecture for Data Communication Standards Committee voted to cancel document - 7/19/2002 J2058 and J2106 Rationale Per Jack Volk, Vice Chairperson of Vehicle Architecture for Data Communication Standards Committee, document not being used. Information may be contained in other documents, (not necessarily SAE documents).
Standard

Glossary of Vehicle Networks for Multiplexing and Data Communications

1997-09-01
CURRENT
J1213/1_199709
This document covers the general terms and corresponding definitions that support the design, development, implementation, testing, and application of vehicle networks. The terminology also covers some terms and concepts of distributed embedded systems, network hardware, network software, physical layers, protocols, and other related areas.
Standard

Glossary of Automotive Electronic Terms

1978-06-01
CURRENT
J1213_197806
This glossary has been compiled to serve for reference in an effort to assist communications between the automotive engineer and the electronics engineer. This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
Standard

Glossary of Automotive Electronic Terms

1988-10-01
HISTORICAL
J1213B_198810
This glossary has been compiled to serve for reference in an effort to assist communications between the automotive engineer and the electronics engineer. This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
Standard

Glossary of Automotive Electronic Terms

1982-11-01
HISTORICAL
J1213_198211
This glossary has been compiled to serve for reference in an effort to assist communications between the automotive engineer and the electronics engineer. This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
Standard

Glossary of Automotive Electronic Terms

1988-04-01
HISTORICAL
J1213_198804
This glossary has been compiled to serve for reference in an effort to assist communications between the automotive engineer and the electronics engineer. This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
Standard

Glossary of Vehicle Networks for Multiplexing and Data Communications

1991-06-01
HISTORICAL
J1213/1_199106
This document covers the general terms and corresponding definitions that support the design, development, implementation, testing, and application of vehicle networks. The terminology also covers some terms and concepts of distributed embedded systems, network hardware, network software, physical layers, protocols, and other related areas.
X