Refine Your Search




Search Results


Aircraft Thermal Management: Integrated Energy Systems Analysis

The simultaneous operation of all systems generating, moving, or removing heat on an aircraft is simulated using integrated analysis which is called Integrated Energy System Analysis (IESA) for this book. Its purpose is to understand, optimize, and validate more efficient system architectures for removing or harvesting the increasing amounts of waste heat generated in commercial and military aircraft. In the commercial aircraft industry IESA is driven by the desire to minimize airplane operating costs associated with increased system weight, power consumption, drag, and lost revenue as cargo space is devoted to expanded cooling systems. In military aircraft thermal IESA is also considered to be a key enabler for the successful implementation of the next generation jet fighter weapons systems and countermeasures. This book contains a selection of papers relevant to aircraft thermal management IESA published by SAE International.

Aircraft Thermal Management: Systems Architectures

Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft.

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book.

Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously

Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously describes energy harvesting using a hybrid concentrating photovoltaic (PV) system with simultaneous thermal generation for energy storage. Several designs have been proposed to build a system that takes advantage of the entire solar spectrum through direct electric generation using concentrated light onto photovoltaics while generating thermal energy using wavelengths of light not captured by the PV cell. This title addresses the current technologies and state-of-the-art designs, as well as the methodologies, underlying physics, and engineering implications.

48-Volt Developments

Development of higher-voltage electrical systems in vehicles has been slowly progressing over the past few decades. However, tightening vehicle efficiency and emissions regulations and increasing demand for onboard electrical power means that higher voltages, in the form of supplemental 48 V subsystems, may soon be nearing production as the most cost-effective way to meet regulations. The displacement of high-wattage loads to more efficient 48 V networks is expected to be the next step in the development of a new generation of mild hybrid vehicles. In addition to improved fuel economy and reduced emissions, 48 V systems could potentially save costs on new electrical features and help better address the emerging needs of future drivers. Challenges to 48 V system implementation remain, leading to discussions by experts from leading car makers and suppliers on the need for an international 48 V standard. Initial steps toward a proposed standard have already been taken.

The Global Market for Automotive Turbochargers: 2015 edition

Since the last edition of this report in 2013, the demand on automakers has been relentless in terms of improving fuel economy and reducing emissions, thus driving increased sales of forced induction systems. The use of pressure charging techniques has therefore expanded significantly. Recent years have seen the ascendancy of the turbocharger and its use by almost every major global manufacturer.

Wireless Charging Technology and The Future of Electric Transportation

Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and inter-operability. Wireless Charging Technology and the Future of Electric Transportation covers the current status of wireless power transfer (WPT) technology and its potential applications to the future road and rail transportation systems. Focusing on the applications of WPT technology to electric vehicle charging and the future green transportation field, Wireless Charging Technology and the Future of Electric Transportation was written collaboratively by nine experts in the field, led by Dr. In-Soo Suh, a professor and researcher from the Korean Advanced Institute of Technology (KAIST).

Honda R& D Technical Review April 2015

Honda's April 2015 R&D Technical Review features cutting-edge developments and new ways of solving engineering problems from Honda's worldwide R&D teams. This edition brings 17 technical papers covering: • New motorcycle design and styling • Styling design of new crossover VEZEL • Development of inverter generator w/ fuel injector engine • Development of UNI-CUB • Synthesis of facet-controlled PtNi nanoparticles and evaluation of performance in PEM fuel cell • Prediction method for vibration transmission of hydraulic engine mount • Study of human dynamic analysis relating to handling and stability fo driving

Thermal Management in Automotive Applications

With new and more stringent standards addressing emission reduction and fuel economy, the importance of a well-developed engine thermal management system becomes even greater. With about 30% of the fuel intake energy dissipated through the cooling system and another 30% through the exhaust system, it is to be expected that serious research has been dedicated to this field. Thermal Management in Automotive Applications, edited by Dr. T. Yomi Obidi, brings together a focused collection of SAE technical papers on the subject. It offers insights into how thermal management impacts the efficiency of engines in heavy vehicles, the effects of better coolant flow control, and the use of smart thermostat and next-generation cooling pumps. It also provides an in-depth analysis of the possible gains in optimum warm-up sequence and thermal management on a small gasoline engine.

Electric Motors for Hybrid and Pure Electric Vehicles 2015-2025: Land, Water, Air

The electric vehicle business will approach a massive $500 billion in 2025 with the traction motors segment capturing over $25 billion. Traction motors propelling land, water and air vehicles along can consist of one inboard motor or - an increasing trend - more than one near the wheels, in the wheels, in the transmission or ganged to get extra power. Complex trends in this industry are explained with this updated report, and future winning suppliers are identified alongside market forecasts. The information is especially important as hybrid vehicles may have the electric motor near the conventional engine or its exhaust, and this may mean they need to tolerate temperatures never before encountered in pure electric vehicles. Motors for highly price-sensitive markets such as electric bikes, scooters, e-rickshaws and micro EVs avoid the price hikes of neodymium and other rare earths in the magnets.

Range Extenders for Electric Vehicles Land, Water & Air 2015-2025

Half the electric vehicle market value lies in larger road vehicles, notably cars, and here the legal restrictions are weaker or non-existent, and range anxiety compels most people to buy hybrids if they go electric at all. Over eight million hybrid cars will be made in 2025, each with a range extender, the additional power source that distinguishes them from pure electric cars. Add to that significant money spent on the same devices in buses, military vehicles, boats and so on and a major new market emerges. Whereas today's range extenders usually consist of little more than off- the- shelf internal combustion engines, these are rapidly being replaced by second- generation range extenders consisting of piston engines designed from scratch for fairly constant load. However, a more radical departure is the third- generation micro turbines and fuel cells that work at constant load.

Honda R&D Technical Review October 2014

Honda's October 2014 R&D Technical Review features cutting-edge developments from Honda's worldwide R&D teams. This edition brings 32 original papers. They cover advancements in the following areas: • Development of HF120 turbofan engine • Development of High-access survey robot for TEPCO's Fukushima Daiichi Nuclear Power Station • Advanced ignition control technology for HCCI Combustion • Identification of brake-drag mechanism in coasting-down mode and proposal of brake-drag stabilization and reduction methods

Concepts in Turbocharging for Improved Efficiency and Emissions Reduction

Legislative requirements to reduce CO2 emissions by 2020 have resulted in significant efforts by car manufacturers to explore various methods of pollution abatement. One of the most effective ways found so far is by shortening the cylinder stroke and downsizing the engine. This new engine then needs to be boosted, or turbocharged, to create the full and original load torque. Turbocharging has been and will continue to be a key component to the new technologies that will make a positive difference in the next-generation engines of years to come. Concepts in Turbocharging for Improved Efficiency and Emissions Reduction explores the many ways that turbocharging will deliver concrete results in meeting the new realities of sustainable, green transportation.

Everything Works Wonderfully

EVERYTHING WORKS WONDERFULLY is a 250-page A4 softback book written to provide a structured source of guidance and reference information on Servitization and the management of physical assets for people at all levels in industry: • Senior executives considering the expansion of their businesses into the provision of Asset Management services for the products they design and manufacture; • Middle management wishing to know what needs to be done to look after the assets they are responsible for and who to approach for help; • ‘Hands-on’ engineers looking for contacts and advice on detailed tools and techniques. • Academics may also find the book useful as a source of contacts and ideas for research.

The Global Market for Stop-Start Systems: Trends & Forecasts to 2020

The increasingly stringent emissions regulations faced by vehicle manufacturers have been driving the growth of more fuel-efficient conventionally powered vehicles. The ability of stop-start systems to improve vehicle carbon emissions by between 5% and 15% at very low additional cost has seen a dramatic increase in the proportion of vehicles being fitted with such systems. And this growth in demand for stop-start systems is set to increase substantially, especially in Europe, North America, China and Japan. The exclusive new report from ABOUT Automotive reviews the key market drivers for stop-start engine technology for the ‘micro hybrid’ segment and conventional internal combustion engine (ICE) vehicle applications. It sets out the market drivers and forecasts for the global stop-start systems market through to 2020 and reviews the technical advances made in stop-start technology, including the competing technologies, and the latest developments.

Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications

Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications provides an in-depth assessment of the most important technology, manufacturing, and supply chain aspects of the fast-paced world of electric motors. A joint effort that brings together the technology and product strategy experience of the P3 Group and the focused reach of SAE International, Unwinding Electric Motors: Strategic Perspectives and Insights for Automotive Powertrain Applications lends clarity combined with solid data to those interested in understanding the fundamental factors shaping this industry in the next five years. Authored by Timothy G. Thoppil, from the P3 Group, this market study draws on extensive industry experience and is supported by surveys and interviews with industry professionals from OEMs, Tier 1 suppliers, research institutions, and universities.

Engine Emissions Measurement Handbook

The subject of engine emissions is expected to be at the forefront of environmental regulations and consumers’ concerns for years to come. As technology develops to comply with new and different requirements in various regions of the world, understanding the fundamental principles of how engine emissions occur, and how they can be properly measured, is vitally important. Engine Emissions Measurement Handbook, developed and co-authored by HORIBA Automotive Test Systems team addresses the main aspects of this subject. Written with the technical user in mind, this title is a must-have for those involved in engine development and testing, and environmental researchers focusing on better ways to minimize emissions pollution.

Fuel/Engine Interactions

Conventional fossil fuels will constitute the majority of automotive fuels for the foreseeable future but will have to adapt to changes in engine technology. Unconventional transport fuels such as biofuels, gas-to-liquid fuels, compressed natural gas, and liquid petroleum gas will also play a role. Hydrogen might be a viable transport fuel if it overcomes barriers in production, transport, storage, and safety and/or if fuel cells become viable. This book opens by considering these issues and then introduces practical transport fuels. A chapter on engine deposits follows, which is an important practical topic about how fuels affect engines that is not usually considered in other books. The next three chapters discuss auto-ignition phenomena in engines. The auto-ignition resistance of fuels is the most important fuel property since it limits the efficiency of spark ignition engines and determines the performance of compression ignition engines.

Future Automotive Fuels and Energy

This book sheds light on three essential questions: 1. What is the likely supply of gasoline and diesel from oil worldwide to power light vehicles and trucks through 2030-2035? 2. Could any other fuel economically replace gasoline? Will different parts of the world answer that question differently? 3. How will the answers to these questions affect what we engineer, make, and drive in 2030–2035? As difficult as it is to predict timing of these events, the book presents reasonable assumptions and alternative scenarios. Since a switch to alternative technologies will require substantial investment, it is critical to have a sense of when. Despite the global reach of the automotive industry, it is unlikely that a solution for one region will fit all. A more reasonable goal is a set of projected ‘ecosystems’ using differing amounts of oil, electricity, or alternative fuels. From this, automotive managers and leaders can get a sense of how to make business decisions for the future.

Hybrid Vehicles

The fast growth in world population and the associated energy requirements, the announced depletion of fossil fuel resources, the continuing rise in greenhouse gas (GHG) emissions with the induced climatic changes represent some of the major challenges to be taken up in the coming decades. Hybridization, therefore, typically represents a transition technology which can significantly improve the energy and environmental performance of current vehicles, without radically changing their use typologies, while opening the way to new propulsion modes for the longer term. It is nevertheless a complex subject requiring a multidisciplinary approach. This book, which is intended to be exhaustive, considers the vehicle, its components, their association and their control, as well as the global balances determined over the vehicle lifetime.