Refine Your Search

Topic

Search Results

Journal Article

Numerical Prediction of Various Failure Modes in Spotweld Steel Material

2018-05-11
Abstract Crash simulation is targeted mainly carried out by the collision regulations FMVSS simulation to identify problems in vehicle structures. A modern car structure consist of several thousand weld-type connections, and failure in these connections plays an important role for the crashworthiness of the vehicle. Therefore accurate modeling of these connections is important for the automotive industry in order to improve Vehicle collision characteristics. In pursuit of this key requirement, we introduced a proper methodology for the development detailed weld model to study structural response of the weld when the applied load range is beyond the yield strength. Three-dimensional finite element (FE) models of spot welded joints are developed using the LS-Dyna FE code. In this process the force estimation model of spot welds is explained. The results from this paper shows good agreement between the simulations and the tests.
Journal Article

Multi-Objective Optimization of Counterweights: A Substitute for the Balance Shaft or Mass Unbalancing in Three-Cylinder Engines

2018-10-18
Abstract Three-cylinder engines were launched, given the increasing demand for improved fuel economy and efficiency along with reduced friction and weight. Unlike four-cylinder engines, these engines are not naturally balanced. So, in order to compete with four-cylinder engines, some methods to solve this inherent weakness, such as balance shaft, mass unbalancing of flywheel and crankshaft pulley, or counterweights configuration (angular orientation and correction amount), have been used. Considering the undesirable characteristics of the balance shaft, such as cost, weight, friction, and noise, as well as dynamically inappropriate mass unbalancing method, this research proposes multi-objective optimization of counterweights to reduce vibrations.
Journal Article

Movement Prediction Hypotheses for Pedestrians and Trajectory Planning for Cooperative Driving Systems

2018-12-19
Abstract It is a challenge to find a safe trajectory for automated vehicles in urban environments with pedestrians. The prediction of future movements with 100% certainty is impossible, if the intention is unknown. A Gaussian process approach is used to formulate future movement hypotheses of the pedestrian based on historical movements. A mixed integer linear programming (MILP) optimization approach is used for the trajectory planning of the vehicle. The collision probability between the ego-vehicle and pedestrian is used as constraints in the optimization. This approach is useful for cooperative vehicle systems, with historical movement data in a fixed urban environment (e.g., intersection) and the premise that pedestrians follow typical movement data.
Journal Article

Motion Cueing Algorithm for a 9-DoF Driving Simulator: MPC with Linearized Actuator Constraints

2019-07-09
Abstract In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Journal Article

Mixture Distributions in Autonomous Decision-Making for Industry 4.0

2019-05-29
Abstract Industry 4.0 is expected to revolutionize product development and, in particular, manufacturing systems. Cyber-physical production systems and digital twins of the product and process already provide the means to predict possible future states of the final product given the current production parameters. With the advent of further data integration coupled with the need for autonomous decision-making, methods are needed to make decisions in real time and in an environment of uncertainty in both the possible outcomes and in the stakeholders’ preferences over them. This article proposes a method of autonomous decision-making in data-intensive environments, such as a cyber-physical assembly system. Theoretical results in group decision-making and utility maximization using mixture distributions are presented. This allows us to perform calculations on expected utility accurately and efficiently through closed-form expressions, which are also provided.
Journal Article

Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models

2018-05-07
Abstract Finite Element Analysis (FEA) of metal cutting is largely the domain of research organizations. Despite significant advances towards accurately modelling metal machining processes, industrial adoption of these advances has been limited. Academic studies, which mainly focused on orthogonal cutting, fail to address this discrepancy. This paper bridges the gap between simplistic orthogonal cutting models and the complex components typical in the manufacturing sector. This paper outlines how to utilize results from orthogonal cutting simulations to predict industrially relevant performance measures efficiently. In this approach, using 2D FEA cutting models a range of feed, speed and rake angles are simulated. Cutting force coefficients are then fit to the predicted cutting forces. Using these coefficients, forces for 3D cutting geometries are calculated.
Journal Article

Joint Mechanism and Prediction of Strength for a Radial Knurling Connection of Assembled Camshaft Using a Subsequent Modeling Approach

2018-06-25
Abstract Knurling joint applied in assembled camshaft has developed rapidly in recent years, which have exhibited great advantages against conventional joint methods in the aspects of automation, joint precision, thermal damage, noise, and near net shape forming. Both quality of assembly process and joint strength are the key requirements for manufacturing a reliable assembled camshaft. In this article, a finite element predictive approach including three subsequent models (knurling, press-fit and torsion strength) has been established. Johnson-Cook material model has been used to simulate the severe plastic deformation of the material. The residual stress field calculated from the knurling process was transferred as initial condition to the press-fit model to predict the press-fit load. The predicted press-fit load, torque strength and displacement of cam profile before failure were calculated.
Journal Article

Investigation of Residual Stresses in Cold-Formed Steel Sections with Nonlinear Strain-Hardened Material Model

2018-09-17
Abstract In this article, forming residual stresses in cold-formed small-radius corner sections are analytically predicted with the consideration of the shift in the neutral axis and the nonlinear strain-hardened material model. The predicted forming stress results in the transverse direction show a trend of increased compressive residual stress in the outer surface and reduced tensile residual stress in the inner surface as the corner radius-to-thickness ratio increases in small-radius bends. In the longitudinal direction, there is no significant change in the residual stress values observed in the inner and outer surfaces with respect to an increase in corner radius-to-thickness ratios. But a considerable decrease in compressive residual stress and an increase in tensile stress values are observed in the midsection areas with an increase in the corner radius-to-thickness ratio.
Journal Article

Influence of the Friction Coefficient in Self-Pierce Riveting Simulations: A Statistical Analysis

2018-05-08
Abstract In this work, optimal modeling parameters for self-pierce riveting (SPR) were determined using a factorial design of experiments (DOE). In particular, we show statistically how each of the calibrating parameters used in modeling the SPR process through nonlinear finite element modeling can drastically change the geometry of the joint. The results of this study indicate that the degree of interlock, which is a key feature of a sound joint, is largely influenced by the friction between the die and bottom sheet as well as the friction between the rivet and top sheet. Furthermore, this numerical study also helped elucidate the role of friction in SPR and sheds light on how coatings with diverse friction coefficients can affect material deformation and ultimately structural integrity of the joint.
Journal Article

In-Plane Flexible Ring Tire Model Parameter Identification: Optimization Algorithms

2018-05-03
Abstract Parameter identification is an important part of tire model development. The prediction performance of a tire model highly depends on the identified parameter values of the tire model. Different optimization algorithms may yield different tire parameters with different computational accuracy. It is essential to find out which optimization algorithm is most likely to generate a set of parameters with the best prediction performance. In this study, four different MATLAB® optimization algorithms, including fminsearchcon, patternsearch, genetic algorithm (GA), and particleswarm, are used to identify the parameters of a newly proposed in-plane flexible ring tire model. The reference data used for parameter identification are obtained through a ADAMS FTire® virtual cleat test. After parameters are identified based on above four algorithms, their performances are compared in terms of effectiveness, efficiency, reliability, and robustness.
Journal Article

Improving Multi-Axle Vehicle Steering Coordination Performance Based on the Concept of Instantaneous Wheel Turn Center

2019-03-14
Abstract A new concept of instantaneous wheel turn center (IWTC) is proposed to evaluate and improve multi-axle vehicle steering coordination performance. The concept of IWTC and its calculation method are studied. The index named dispersion of IWTC is developed to evaluate the vehicle steering coordination performance quantitatively. The simulation tests based on a three-axle off-road vehicle model are conducted under different vehicle velocities and lateral accelerations. The simulation results show that the turn centers of different wheels are disperse, and the dispersion becomes larger with the increase of vehicle velocities and lateral acceleration. Since suspension has important influences on vehicle steering performance, the genetic algorithm is used to optimize the suspension hard points and bushing stiffness, aiming at minimizing the dispersion of wheel turn centers (DWTC) to improve the vehicle steering coordination performance.
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
Journal Article

Impact of Dynamic Characteristics of Wheel-Rail Coupling on Rail Corrugation

2019-07-02
Abstract To gain a better understanding of the characteristics of corrugation, including the development and propagation of corrugation, and impact of vehicle and track dynamics, a computational model was established, taking into account the nonlinearity of vehicle-track coupling. The model assumes a fixed train speed of 300 km/h and accounts for vertical interaction force components and rail wear effect. Site measurements were used to validate the numerical model. Computational results show that (1) Wheel polygonalisation corresponding to excitation frequency of 545-572 Hz was mainly attributed to track irregularity and uneven stiffness of under-rail supports, which in turn leads to vibration modes of the bogie and axle system in the frequency range of 500-600 Hz, aggregating wheel wear. (2) The peak response frequency of rail of the non-ballasted track coincides with the excitation frequency of wheel-rail coupling; the resonance results in larger wear amplitude of the rail.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Gear Shift Quality Parameters Optimization for Critical to Quality Dimensions

2018-06-20
Abstract Gear Shift Quality (GSQ) in passenger cars is one of the sensitive touch points, which has a direct effect on driver fatigue and drivability. In the following article, an attempt has been made to study the variance in Critical to Quality (CTQ) dimensions and their influence on GSQ parameters. CTQ matrix that shows relation between CTQ parameters and GSQ parameters is formed and is analyzed to study process capability. Impact of variance in CTQs on GSQ parameters is studied and finally has resulted intoaTolerance revisionbRemoval of C of C symbol from drawing wherever is required In an automobile transmission, the driver’s comfort of smooth shifting and selection of gears is a major concern for the transmission designer. Apart from smoother shifting and selection of gears while driving, the overall gearshift quality is also important for the transmission designer, which has a direct impact on customer delight.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Evaluation of Weldability and Mechanical Properties in Resistance Spot Welding of Ultrahigh-Strength TRIP1100 Steel

2018-12-14
Abstract To use steel in the automotive industry, it is essential to characterize its weldability and weldable current range. The resistance spot welding of ultrahigh-strength transformation-induced plasticity steel (TRIP1100 steel), which is a candidate for application in an autobody, is studied here. Identifying the weld lobe and the best welding parameters and studying the microstructure and mechanical properties of the spot welds of TRIP steel were done using metallurgical techniques, tensile-shear and cross-tension tests, and fractography and microhardness testing. A partial fracture analysis (stepwise tensile test) showed a crack initiated at the tip of the notch. The best range for welding current was found to be 10-12 kA. The diameter of the weld nugget increased up to 5√t; however, it was found that at least 15% increase in the diameter of the weld nugget can result in a more favorable failure. The ductility ratio was found to be less than 0.5 for ultrahigh-strength steel.
Journal Article

Erosion Wear Response of Linz-Donawitz Slag Coatings: Parametric Appraisal and Prediction Using Imperialist Competitive Algorithm and Neural Computation

2019-03-14
Abstract Slag, generated from basic oxygen furnace (BOF) or Linz-Donawitz (LD) converter, is one of the recyclable wastes in an integrated steel plant. The present work aims at utilization of waste LD slag to develop surface coatings by plasma spraying technique. This study reveals that LD slag can be gainfully used as a cost-effective wear-resistant coating material. A prediction model based on an artificial neural network (ANN) is also proposed to predict the erosion performance of these coatings. The 2.27% error shows that ANN successfully predicts the erosion wear rate of the coatings both within and beyond the experimental domain. In addition to it, a novel optimization algorithm called imperialist competitive algorithm (ICA) is used to obtain minimum erosion wear rate of 12.12 mg/kg.
Journal Article

Effect of Welding Parameters on the Microstructure and Tensile Properties of Friction Stir-Welded DP600 Steel

2019-07-02
Abstract The aim of this study was to investigate the effect of friction stir welding (FSW) parameters on the microstructure and tensile properties of dual-phase (DP) steels. In this regard, DP600 steel sheets were joined using FSW under different tool rotational (ω) and transverse speeds (v). Optical microstructure of the stir zone exhibited a mixture of bainite, Widmanstatten ferrite, grain boundary ferrite, and ferrite-carbide (FC) aggregate, which resulted in a hardness increase compared to the base metal (BM). The fraction of bainite and Widmanstatten ferrite in the stir zone increased with increasing the welding heat input. Formation of a softened zone in the subcritical area of the heat-affected zone (HAZ) resulted in the reduction of ultimate tensile strength and total elongation compared to those for the BM, while the yield strength was only marginally affected.
Journal Article

Driveline Ratio Selection and Shift Map Optimization for Automatic Transmission Vehicle at Concept Phase through Simulations

2017-10-08
Abstract Traditionally driveline ratios are selected based on trial and error method of proto vehicle testing. This consumes lot of time and increases overall vehicle development effort. Over last few decades, simulation-based design approach has been extensively used to alleviate this problem. This paper describes torque converter and final drive ratio (FDR) selection at concept phase for new Automatic Transmission (AT) vehicle development. Most of the critical data required for simulating vehicle performance and fuel economy (FE) targets were not available (e.g. shift map, clutch slip map, pedal map, dynamic torque, coast down, etc.) at an initial stage of the project. Hence, the risk for assuming right inputs and properly selecting FDR/Torque converter was particularly high. Therefore, a validated AVL Cruise simulation model based on an existing AT vehicle was used as a base for new AT vehicle development to mitigate the risk due to non-availability of inputs.
X