Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Heat Absorption Properties of Fuel Blends from Recycled Edible and Lubricating Oils

2019-11-14
2019-01-5087
The urgency to reduce pollutant emissions from the combustion of neat diesel has led to the production, especially from waste substances, of various types of alternative fuels and new methods of analysis that sustain their use. The study of the heat absorption properties of different fuel blends, from recycled edible and lubricant oils, allows to identify the type and concentration of the fuel blend, which allows taking advantage of the generated heat from the air compression stroke of an internal combustion engine, increasing the temperature in the combustion chamber volume and giving the possibility to accelerate the chemical reaction during the combustion process. By means of spectral analysis in the visible and near-ultraviolet range of electromagnetic radiation, it measured the absorption capacity of heat energy of different concentrations and types of fuel blends from vegetable-animal and mineral-synthetic sources.
Technical Paper

Simulation-Driven Model-Based Approach for the Performance and Fuel Efficiency Trade-Off Evaluation of Vehicle Powertrain

2019-11-14
2019-01-5085
The automobile manufacturers are currently facing a double challenge. While they must meet tight vehicle emission regulations established by the authorities, they also have to achieve the current market demands, which look towards fuel efficient vehicles for city driving, but still delivering high performance for unproblematic highway cycles. The purpose of this study is to evaluate the influence of different axle ratios in the conflicting fuel economy versus acceleration performance trade-off. The article will present the modeling and simulation of a four-wheel-drive light-duty vehicle with six-speed automatic transmission subjected to three drive cycles: the FTP-72 (Federal Test Procedure) cycle, the Highway Fuel Economy Test (HWFET) cycle, and the 0-100 km/h acceleration cycle.
Technical Paper

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

2019-11-04
2019-01-5034
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments.
Technical Paper

Calculation of Drag Torque Losses by Component of a Transfer Case

2019-10-22
2019-01-2605
In recent decades, fuel economy has become a key indicator of an automaker corporate social responsibility and a market differentiation factor, and ultimately it is regulated by government agencies such as EPA through CO2 emissions compliance tests. The light pick-up truck and SUV production share has been increasing in the last few years, being 4-wheel drive capability one of the main features that customers seek. Within the 4-Wheel Drive system, the transfer case has a significant impact to both torque transfer efficiency and parasitic losses. The scope of this paper is to better understand the parasitic losses of a transfer case by the quantification of its individual drag losses by component. At product development phases, one measurement of interest is the system level spin loss which has a target value defined by the automakers, and contribution by component is often neglected if the system has the expected performance.
Technical Paper

An IMPC Based Parking Assistance System

2019-10-22
2019-01-2614
This paper summarizes progress and outcome from our research projects on IMPC-based parking management system, including parking motion planning and control strategy, as well as a searching strategy for parking spot. IMPC here refers to interactive model predictive control regime, which is characterized in that multiple agents implementing separate MPC strategy are incorporating information about their state, objective, and constraints. To predict future parking parameters, we proposed a practical framework which integrates anticipatory techniques with a model predictive approach that robustly models the stochastic parking environment. The framework is able to take into account the interactions between vehicle subsystems, and can optimize trajectory under complex traffic patterns in real-world scenarios. Adaptive model predictive control is utilized to optimally minimize a cost function regarding performance, energy efficiency and drivability with regard to surrounding vehicle states.
Technical Paper

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

2019-10-22
2019-01-2604
The research work intends to assess the need and improvement by using a low viscous bio oil, RH (rice husk) nano particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel is its higher viscosity. Hence, a low viscous oil (pine oil) which does not need transesterification process was used as a biofuel in this study. Further, to improve its characteristics a non-metallic nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100 ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (hydrocarbon)-34.8%, Smoke-31.6%, CO (carbon monoxide)-43.7%. On the contrary, NOx (oxides of nitrogen) emission was found to be increased for all load values.
Technical Paper

Performance Analysis of an Automated Manual Transmission Controller for Two-Wheeler

2019-10-11
2019-28-0125
This research paper presents controller development and its performance analysis for two wheeler. The comparison for different performance parameters is carried out with and without automated manual transmission (AMT) controller. The AMT considered in this case, includes a conventional manual transmission gear-box with conventional clutch pedal. It is equipped with clutch actuation with the help of linear actuator and the gear shifting using servo motor. The upshift and downshifting of the gears and the clutch actuation is done through the decisions of controller. The results generated during the engine dynamometer test are used as input creating two wheeler vehicle model using AVL cruise software. This vehicle model is used to predict vehicle performance. The vehicle performance results are validated with chassis dynamometer test data. The vehicle model is modified for generation of gear shifting plot.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the direct metal laser sintering (DMLS) is suggested for engine application which is a lightweight aluminum alloy. Mechanical properties like tensile strength, compressive strength, and hardness of both cast and DMLS manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. Reciprocating wear test is carried out for one lakh cycles at 125°C temperature with SAE 40 grade oil as lubricant. Co-efficient of friction (COF), wear rate of the cast and DMLS manufactured samples are compared. Wear patterns are analyzed using SEM images of the wear tracks.
Technical Paper

Enhancement of Performance and Emission Characteristics of SI Engine Using Multi Ground Spark Plug with Alcohol Fuel Blends

2019-10-11
2019-28-0154
Limited fossil fuel reserves, steadily rising prices, incremental vehicle population and increased environmental concerns have sparked a need to evaluate alternate fuels for internal combustion engine vehicles. Alcohol fuels with high oxygen content and higher octane number become an attractive option for spark ignition (SI) engines. In practice, there are so many techniques to improve the engine performance and emission characteristics with alcohol and gasoline fuel blends. However, continuous operation of single ground electrode causes erosion of electrodes that loosens its ignitability which intern leads to higher emissions and reduced performance. Hence, there is a need to explore the influence of spark plug design for further improvement in engine performance and emission reduction.
Technical Paper

Recent Trends on Drivetrain Control Strategies and Battery Parameters of a Hybrid Electric Vehicle

2019-10-11
2019-28-0155
Environmental consciousness is being developed in each and every sector, automotive industry has concentrated in a greater manner. Reduction of tail pipe emission was concentrated and found that hybridization can ensure better results. Hybrid electric vehicle operates on electric motor as well as internal combustion engine. Battery power is one the major source of energy for driving electric motor and different battery technologies have been developed. Battery management system (BMS) controls battery parameters like State of Charge (SoC), State of Health (SoH) and Depth of Discharge (DoD) which definitely has an impact on power-torque ratings. Various drive train configurations are developed based on the power-torque requirements and size of engine/electric motor. Maintaining proper flow of energy can have better reduction in emissions, more battery life, less fuel consumption and optimum power-torque ratings.
Technical Paper

Experimental Investigation on Mechanical Properties and Vibration Damping Frequency Factor of Kenaf Fiber Reinforced Epoxy Composite

2019-10-11
2019-28-0167
Kenaf Fiber regarded as industrial crop for different applications. It is one of the most important plants cultivated for natural fibers globally. Natural fibers such as kenaf fibers are getting attention of researchers and industries to utilize it in different composites due to its biodegradable nature. In this present investigation mechanical properties, vibration damping frequency factor and thermogravimetric analysis of kenaf fiber reinforced epoxy composite (KFREC) have been evaluated and reported. The tests were conducted with different weight categories of kenaf fiber such as 20%, 25%, 30% and 35%. The effects of fiber content on tensile, flexural, impact strengths, hardness and thermal decomposition properties of the composite were determined. The failure mechanism and damage features of the KFREC were categorized using Scanning Electron Microscope (SEM). The results indicate that the increase in the fiber content decreases the damping vibration factor (ζ) correspondingly.
Technical Paper

Effects of Dual Biodiesel on a LHR-DI Diesel Engine Performance, Emission and Combustion Characteristics

2019-10-11
2019-28-0176
Importance of this investigation is 100% biodiesel make use as fuel for low heat rejection diesel engine. Due to this reason bio-fuels namely, eucalyptus oil along with paradise oil be selected and utilized as dual fuel. Conventional engine hardware parts were coated with lanthana-doped yttria-stabilized zirconia (the doping of YSZ coatings with small amount of La2O3) with a thickness of 300 μm, so as to analyses the operating parameters of paradise oil-eucalyptus oil blends. Tests run were replicated on the conventional diesel engine and outcomes were compared. Test outcomes confirmed that the major intention of this research was attained as engine operating parameters like, brake thermal efficiency, exhaust gas temperature were increase with decrease of fuel consumption. In addition, engine emissions of HC, CO and smoke were reduced with exception of NOx for LHR diesel engine than conventional engine.
Technical Paper

Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine

2019-10-11
2019-28-0108
The combustion phenomenon of diesel engines has got a very major impact on the performance and exhaust emission levels. Several important factors like engine components design, combustion chamber design, Exhaust gas recirculation, exhaust after treatments systems, engine operating parameters etc. decide the quality of combustion. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum timing of injection. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which lead to the selection of perfect injector for a given engine. This paper focusses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP.
Technical Paper

Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil

2019-10-11
2019-28-0081
In this experimental study, combustion, performance & emission characteristics of a single cylinder D.I. diesel engine is analyzed using lemon grass oil and diesel blend B20. The alumina (Al2O3) nano-particles of 10, 20 and 30 parts per million (B20A10, B20A20, B20A30) are assorted with prepared fuel blend through an ultrasonicator which would help to fetch an unvarying suspension of nano-particles over the blend fuel. SEM analysis and X-ray diffraction have been done for the alumina nano-particles to test the size of the particles that are blended to the bio-fuel blends. The chemical reactivity and rate of mixing are better though the characteristics of nano-particles exhibit high exterior area/capacity ratio during combustion that ultimately results in good characteristics of a diesel engine. Among test fuels, B20A20 shows healthier performance both in relationships of efficiency & emissions such as Nitrous oxide (NOx), hydrocarbon (HC), Carbon monoxide (CO), and Smoke.
Technical Paper

Impact of Waste Plastic Oil and Its Blends on Performance Combustion and Emission Characteristics of CRDI Engine

2019-10-11
2019-28-0047
Utilization of diesel is augmented consistently by transportation and industrial sectors which is making its existence obsolete in near future. Tremendous research has been done by many researchers to find an appropriate alternative for diesel fuel, in this scenario abundant acquisition of plastic wastes and their improper retreating techniques has grabbed the attention of researchers to convert them into alternative fuel for IC engines. This experimental investigation aims to study the performance, combustion and emission characteristics of common rail direct injection (CRDI) fuelled with waste plastic oil and diesel blends at different injection strategies and at various loading conditions. From the results it is noticed that slight decline in the thermal efficiency of the engine when operated with waste plastic oil (100%) due to high viscosity and lower heating value. There was a momentous diminishment in NOx emissions for low injection pressures of plastic diesel blend (P30).
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Design and Development of Intake Ports for 2-Valve & 4-Valve Configurations for Heavy Duty Off-Highway Diesel Engine

2019-10-11
2019-28-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. Development of diesel engines for off-highway application for different power segments need different intake port design solutions to optimise in-cylinder flow structure for efficient combustion. With adaptation of low pressure mechanical fuel injection system, intake port development becomes an important stage for reduction of emission formation at the source and improvement in fuel economy. In this paper, intake port design and development process is elaborated for two different power ratings of 75 hp and 120 hp of off-highway engine. 2-valve and 4-valve configurations are deployed for the same cylinder bore size.
Technical Paper

Fuel Efficiency Improvement in Automatic Transmissions by Lockup Slip Methodology

2019-10-11
2019-28-0029
Increasing of automatic transmissions in passenger cars is based on pleasure of driving, smooth acceleration and easy operation makes the customer satisfaction. Challenges beyond 2020 is BS VI emission norms in India - a very tough goals on CO2& NOx reduction in Gasoline & Diesel vehicles. But its setback in lower fuel economy. To support & enhance fuel economy in Automatic transmissions as part of drivetrain technologies, this article discusses about the power losses in torque converters and experiments on the actual Automatic transmission (AT) vehicle on-road to understand the real city driving behavior in the aspects of gear utilization & gas pedal utilization throughout the entire traffic conditions. With that data research, slip area and slipping conditions is determined & clutch slip control is enabled at area in torque converter by ensuring that NVH parameters are not affected.
Technical Paper

Real Time Piston Temperature Measurement Using Telemetry Technique in Internal Combustion Engine

2019-10-11
2019-28-0022
By looking current scenario, engine development lead time was reducing day by day to enter early in the competitive market and to compete as early as possible. During initial engine development phase, it was very important to know how engine operating temperatures were affecting to piston pack and related system. Conventionally temp plug method was used to capture the piston temperature, but it was time consuming, much costly, for every test condition, new temp plug pistons required, if unfortunately, any hot shutdown happened during the test, again full test needs to be restarted with new set of temp plug pistons and many more limitations. So, for Cummins engine we used Telemetry technique to measure the piston temperature ONLINE and in real time. Piston telemetry enables the telemetric transfer of piston data from internal reciprocating and rotating components. The pistons had wireless telemetry to send real time steady state and transient data from within engines.
Technical Paper

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

2019-10-11
2019-28-0019
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
X