Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Blockchain-Backed Database for Qualified Parts

2019-03-19
2019-01-1343
Certain standard parts in the aerospace industry require qualification as a prerequisite to manufacturing, signifying that the manufacturer’s capacity to produce parts consistent with the performance specifications has been audited by a neutral third-party auditor, key customer, and/or group of customers. In at least some cases, a certifying authority provides manufacturers with certificates of qualification which they can then present to prospective customers, and/or lists qualified suppliers in a Qualified Parts List or Qualified Supplier List available from that qualification authority. If this list is in an infrequently updated and/or inconsistently styled format as might be found in a print or PDF document, potential customers wishing to integrate qualification information into their supplier tracking systems must use a potentially error-prone manual process that could lead to later reliance on out-of-date or even forged data.
Technical Paper

Experiences of Civil Certification of Multi-Core Processing Systems in Commercial and Military Avionics, Integration Activities, and Analysis

2019-03-19
2019-01-1382
Avionics systems are currently undergoing a transition from single core processor architectures to multi-core processor architectures. This transition enables significant advantages in reduction in size, weight, power (SWaP) and cost. However, avionics hardware and software certification policies and guidance are evolving as research and experience is gained with multi-core processor architectures. The unique challenges of using multi-core processors in certified avionics will be discussed. The requirements for a virtualization platform supporting multiple real-time operating system (RTOS) partitions on a multi-core processor used in safety-critical avionics systems are defined, including the ability to support multiple design assurance levels (DAL) on multiple cores, fault isolation and containment, static configuration as per ARINC 653, role-based development as per DO-297, and robust partitioning to reduce cost of incremental certification.
Technical Paper

Improving Coordination and Collaboration in Connected and Automated Vehicle Development Projects Using Model Based Process Design

2019-01-16
2019-01-0103
The development of connected vehicle solutions requires integration of multiple, interfacing systems and technologies - developed by various vendors - to compose a complex system that satisfices requirements of multiple stakeholders. While technical aspects of such integration are widely addressed through interface specifications and standards, the process related aspects of the development still pose a prominent challenge. In this paper, we identify valid, development process related challenges. Then, we describe our model based framework for development process design. Finally, we demonstrate how the framework can be used to improve coordination and collaboration in connected vehicle development projects.
Technical Paper

The Impact of Gasoline Direct Injection System Design on PM Emissions

2019-01-15
2019-01-0072
Gasoline Direct Injection engines can have significantly higher particulate mass (PM) and particulate number (PN) emissions relative to equivalent displacement Port Fuel Injected engines. Both the EPA and California Air Resources Board have adopted new stringent standards to be phased in over the next 10 years. The California regulations continue to tighten to a 1 mg/mi PM limit that is phased-in beginning with model year 2025 with full compliance by model year 2028. This study examines the different fuel injection system technology improvements that will be used to attain the standards to as well as their relative costs, market penetration potential, emission reduction and fuel economy impacts. The identification of alternative approaches and the analysis of their impacts was performed in two tasks. The first task was a comprehensive literature review and the findings of the review are presented.
Journal Article

Gearshift Quality Sensitivity Analysis

2019-01-09
2019-26-0328
Gearshift quality is a perceived quality parameter. Hence, is getting much importance because of the increased awareness about comfortable and refined driving experience, especially in the case of passenger cars. When the topic of gearshift feeling is broached in manual transmission vehicles, synchronizer pack (shifter sleeve, engaging gear, strut, synchronizer and gear synchro ring assembly) have been the focus point for optimization. Synchronizer type (single, double or triple cone), lining material, datch chamfer angle of shifter sleeve/synchro ring of gear/synchronizer, all of these have been extensively studied in the past to improve the gearshift quality. With stringent timelines for vehicle development, OEMs prefer to use off-the-shelf powertrain systems developed by powertrain manufacturers. Due to this, avenues to refine gearshift feel gets reduced to a large extent and hence refinement becomes difficult.
Technical Paper

Engine Braking: A Perspective in Terms of Brake Power

2019-01-09
2019-26-0288
Engine braking is a supplemental retarding technology in addition to foundational friction brakes in commercial vehicles. This technology is in use in Europe & Americas for several decades now. In engine braking, the engine acts as a compressor, thus producing the required braking power. The braking power is generated by either reducing the volumetric efficiency or increasing the pressure difference across the cylinder. This is usually achieved by means of exhaust valve lift modulation. There are dominantly two types of engine brakes viz. bleeder brake and compression release brake. The present work uses GT-Power® model to study the braking performance of a 4-cylinder, medium duty diesel engine at different engine RPMs and valve lifts. The work brings out a comprehensive understanding of different lift events and their effects on braking performance.
Technical Paper

Challenges in the Regulatory Framework of Automated Driving

2019-01-09
2019-26-0097
Automated Driving (AD) is foreseen to be one of the major social and technological challenges in the coming years. Many manufacturers are developing new models with cutting-edge functionalities, which are not included in the scope of the current regulatory framework. Apart from demonstrating their know-how and expertise about AD, their willingness to sell their AD models in the European market is accelerating the rule-making system. However, which is the roadmap for the European regulatory framework? Policy makers and regulatory bodies are pushing their boundaries at all levels (national and international) in order to introduce modifications in existing regulations. These regulations will enable the introduction of these new functionalities into the market. Without decreasing the standards of safety and security, the implementation of a clear and harmonized regulatory framework and approval process is extremely needed.
Technical Paper

Evaluation of the Tire Wear Possibility due to Non-Steerable Twin Tire Lift Axle on Heavy Commercial Vehicle

2019-01-09
2019-26-0066
The commercial vehicle market in India is shifting to higher payload capacity vehicles due to a lower transportation cost per unit goods. To cater this requirement, the vehicle manufacturers are designing the heavy multi-axle commercial vehicles and with higher per axle loading capacity. One of such a vehicle design involves five-axle vehicle with non-steerable, twin tire, lift axle. Though using a twin tires have increased loading capacity of lift axle compared to a single tire self-steerable lift axle, it can cause tire scrub while vehicle is turning and leads to a significant tire wear. The tire wear possibility due to use of non-steerable lift axle is estimated through simulation using full vehicle model in ADAMS. The operating zone of the vehicle, where maximum tire wear can occur, is identified through simulation. Different alternatives to reduce tire wear for this scenario are also discussed.
Technical Paper

Full Vehicle NVH CAE Methodology Development to Address Tailgate Rattling on a Future Tata SUV

2019-01-09
2019-26-0213
In recent years, car manufacturers have been working intensively on new ways to improve the quality of interior trims. Elimination of squeak and rattle has become one of the main concerns for car manufacturers lately, given the significance of these incidences in customers' perception of overall quality. Traditionally, rattle problems are found and fixed with physical tests at the late design stage, mainly due to lack of up-front CAE simulation prediction methodology and tools availability. This article presents a finite element based methodology for the improvement of rattle performance of a vehicle tailgate. In this study, appropriate finite element (FE) modeling technique was introduced to accurately predict occurrence of tailgate rattle. Simulation process using commercial software “Nastran” employing modal and forced frequency response analyses was illustrated. Design modifications were incorporated for performance improvement of rattling on present and future SUVs.
Technical Paper

Comprehensive Investigation of Acrylonitrile-Butadiene-Styrene (ABS) Polymer for Weathering with the Combination of Different Blends of UV Stabilizers, HALS and Antioxidant

2019-01-09
2019-26-0169
The use of polymers in automobiles is increasing constantly and this trend is expected to continue. This clearly indicates that polymer are choice of materials in all the application sectors including in Automobile sector. The main properties in selecting the plastics materials as compared to other materials applied in automobiles are the aesthetic of automotive vehicles, their functionality and cost effective solution, as well as fuel efficiency. These materials are offer remarkable range of appealing properties, the effect of climatic conditions on the degradation and performance of these materials is not fully understood. It is necessary to know the variation of the mechanical properties of any polymer component in automobile after exposed to different atmospheric conditions before particular application. Generally when these components are subjected to weathering effects, they are prone to underperform.
Technical Paper

Challenges in Ultra-Wide Band Worldwide Radio Homologation

2019-01-09
2019-26-0160
Ultra-Wide Band has found increasing use case in Indoor and Outdoor location tracking systems. An interesting application of UWB lies in preventing vehicle thefts that use relay attacks on conventional passive entry passive start electronic systems. Due to very large bandwidth ranging from 3 GHz to 10 GHz in case of UWB, the worldwide radio homologation authorities are challenged to come out with appropriate test and approval processes to limit the growing interference and ensure unified and compatible systems throughout the globe. Having worked on global RF regulatory approval processes for over five years in Short Range Devices (SRD) namely for Car Access and Passive Entry (CAPE) products, the authors have gained important insights about the peculiar needs of the industry, regulatory bodies and test laboratories.
Technical Paper

Evaluation through Realistic Validation. Correlation of CAE with Rig Testing and Field Testing for Automotive Wheel by Strain Measurement Method

2019-01-09
2019-26-0351
Wheel is one of the safety critical components which is being subjected to constant weight reduction but not at the expense of its reliability and durability. The Indian automobiles are subjected to overloading and at the same time endure severe shock loads due to poor road conditions. This forces the vehicle manufacturers to increase the factor of safety on the wheel and also test under severe loading conditions apart from the regulatory requirements and international standard norms. This makes the wheel manufacturers to design not only for the rated or standard load provided by the vehicle manufacturers but also considering the road conditions and OEM torture track testing requirements. Hence, along with the conventional fatigue tests according to the customer requirement, realistic loading conditions needs to be brought in to testing and virtual simulation.
Technical Paper

Failure Analysis and Multi Frequency Swept Sine Testing of Automotive Engine Oil Sump

2019-01-09
2019-26-0354
Automotive business is more focused towards delivering a highly durable and reliable product at an optimum cost. Anything falls short of customer expectation will ruin the manufacturer’s reputation. To exterminate this, all automotive components shall undergo stringent testing protocol during the design validation process. Nevertheless, there are certain factors in the field which cannot be captured during design validation. This paper aims at developing a validation methodology for engine oil sump by simulating field failure. In few of our vehicles, field failure was observed in engine oil sump near the drain plug location. Preliminary analysis was carried out to find the potential causes for failure. Based on the engine test bed results, multi frequency swept sine testing was carried out in laboratory. Field failure was simulated in the lab test and the root causes for failure were found out.
Technical Paper

Warrior Injury Assessment Manikin Oblique Vertical Testing

2018-11-12
SC18-22-0008
Abstract - The Warrior Injury Assessment Manikin (WIAMan) was developed to assess injury in Live Fire Test and Evaluation (LFTE) and laboratory development tests of vehicles and vehicle technologies subjected to underbody blast (UBB) loading. While UBB events impart primarily vertical loading, the occupant location in the vehicle relative to the blast can result in some inherent non-vertical, or off-axis loading. In this study, the WIAMan Technology Demonstrator (TD) was subjected to 18 tests with a 350g, 5-ms time duration drop tower pulse using an original equipment manufacturer (OEM) energy attenuating seat in four conditions: purely vertical, 15° forward tilt, 15° rearward tilt, and 15° lateral tilt to simulate the partly off-axis loading of an UBB event. The WIAMan TD showed no signs of damage upon inspection. Time history data indicates the magnitude, curve shape, and timing of the response data were sensitive to the off-axis loading in the lower extremity, pelvis, and spine.
Technical Paper

Model-Based Approach for Engine Performance Optimization

2018-10-30
2018-32-0082
State-of-the-art motorcycle engines consist of numerous variable components and require a powerful motor management to meet the growing customer expectations and the legislative requirements (e.g. exhaust and noise emissions, fuel consumption) at the same time. These demands are often competing and raise the level of complexity in calibration. In the racing domain, the optimization requirements are usually higher and test efficiency is crucial. Whilst the number of variables to control is growing, the time to perform an engine optimization remains the same or is even shortened. Therefore, simulation is becoming an essential part of the engine calibration optimization. Considering the special circumstances in racing, involving valuable hardware, as well as extremely short development and calibration iteration loops, only transient testing is possible.
Technical Paper

Development of friction coefficient controller for E-coat (KTL)

2018-09-03
2018-36-0200
Global competitiveness increase in the past decades has been a crucial factor for the technological advance and industrial automotive development. Possibility of reducing costs, concentrate knowledge and increase in manufacturing efficiency has lead to development of global automotive platforms. In this scenario, the supply chain needs for adaptations that allow evolution at the same fastness imposed by original equipment manufacturer (OEM). Such demands reflect directly on the fasters market requiring lighter and stronger products. Stronger products are obtained by increasing corrosion resistance and lowering friction coefficient, in order to increase the clamp load and, consequently, reduce the weight without reducing performance. However, increasing corrosion resistance causes, generally, an increase in friction coefficient and, consequently, a decrease in clamp load.
Technical Paper

SCR treatment systems for diesel engines in compliance with the CONAMA P7 pollutant legislation

2018-09-03
2018-36-0120
To produce and market vehicles around the world, manufacturers must meet the current pollutant emission standards. CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE - is the creator of PROCONVE - PROGRAMA DE CONTROLE DA POLUIÇÃO DO AR POR VEÍCULOS AUTOMOTORES - entity that governs the amount of emission of pollutant gases admissible for a vehicle to be homologated and later sold in Brazil. This article is based on the most current version of PROCONVE, which is P7, according to RESOLUÇÃO CONAMA no. 403, November 11, 2008, published in DOU n° 220, November 12, 2008, Section 1, page 92 for heavy vehicles, with a maximum total mass exceeding 3,856 kg or mass of the vehicle in running order of more than 2,720 kg (heavy passenger and / or cargo vehicles).
Technical Paper

Mapping of dirt contamination in heavy duty engines through oil monitoring

2018-09-03
2018-36-0268
Dirt entrance on internal combustion engine's air inlet systems are a common issue to fleet owners. Heavy-duty engines are more susceptible to this due its great air volume aspirated. Aiming to avoid it manufacturers employ increasingly resources to conduct research in the field and to develop more efficient air filtration systems to reduce the probability of this occurs. Anyway, the early diagnosis are the best way to avoid expensive damages to the engine. This study aims to explain how fail due dust aspiration occurs and how to interpret periodic oil analysis in order to preserve the power units and reduce the risk of incorrect diagnosis.
Technical Paper

Pass by Noise Reduction on an Intermediate Commercial Vehicle

2018-06-13
2018-01-1535
A major activity of any new vehicle development program, is to meet legal requirements of local markets. Pass by noise (PBN) test is one of the standardized tests and is used to certify new vehicles/variants for their Noise emissions. Certification for noise emissions of commercial vehicles is achieved by measuring external sound levels according to procedures defined by standards such as IS: 3028 for Indian market. Before a physical proto-vehicle is assembled, various systems and subsystems are readily made available by suppliers off the shelf. During final design validation of the vehicle by mule-vehicle testing, PBN target compliance need be assured for all these systems in order to meet overall PBN target. The PBN on an Intermediate commercial vehicle (ICV) migrated to the latest Exhaust emission standard, was the subject of this study. This vehicle emitted PBN greater than accepted threshold.
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

2018-06-13
2018-01-1543
From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.
X