Refine Your Search

Topic

Author

Affiliation

Search Results

Research Report

Unsettled Topics Concerning Automated Driving Systems and the Transportation Ecosystem

2019-11-25
EPR2019005
Over the last 100 years, the automobile has become integrated in a fundamental way into the broader economy. A broad and deep ecosystem has emerged, and critical components of this ecosystem include insurance, after-market services, automobile retail sales, automobile lending, energy suppliers (e.g., gas stations), medical services, advertising, lawyers, banking, public planners, and law enforcement. These components – which together represent almost $2 trillion of the United State economy – are in equilibrium based on the current capabilities of automotive technology. However, the advent of autonomous vehicles (AVs) and technologies like electrification have the potential to significantly disrupt the automotive ecosystem. The critical cog governing the rate and pace of this shift is the management of the test and verification of AVs.
Technical Paper

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

2019-11-21
2019-28-2400
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB.
Technical Paper

Semi-autonomous parking assist system (SA-PAS)

2019-11-21
2019-28-2529
This paper describes the Semi-autonomous parking assist system (SA-PAS) developed using combination of high accuracy position sensing and electronic power steering. A real-time system that helps driver to identify the parking space and assist to perform maneuvers. Parking is often a difficult task, especially for inexperienced drivers. Starting with the problem of having to find a suitable parking spot, to then maneuvering in to it without colliding with anything or anyone, while trying avoiding disturbing the surrounding traffic. The numbers of vehicles are rapidly increasing as compared to the expansions of roads and parking spaces. Therefore, effective use of the existing spaces is needed (by making them narrower), which can cause inconvenience to many drivers. Semi-autonomous parking assist system searches for suitable space and steers the vehicle into it, while driver has to control the gear shifter, accelerator and brakes.
Technical Paper

Compensation of Signal Offset, Amplitude Imbalance and Imperfect Quadrature in Rotor Position Sensor Signals for Motor Drives

2019-11-21
2019-28-2524
In recent years, the use of the electric motors in automotive applications such as electric power steering (EPS), hybrid and electric vehicles has increased. In these fields, rotor position information plays and important role in the field- oriented control concept. It performs a transformation from the stator reference frame to the rotor reference frame and vice versa. This is nothing but the Park and inverse Park transformation. They are typically used to provide accurate absolute rotor position in high-performance motor drive systems because their robustness and reliability make them particularly suited to Automotive Environment. Hence, greater accuracy of these sensor signals is required. However, in reality, the output signals include the position error in the sensor itself as well as error in the sensor signal conditioning circuits.
Technical Paper

Impact of Vehicle Electrification on Brake Design

2019-11-21
2019-28-2499
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
Technical Paper

C123 Methodology for concept design of the Chassis Frame

2019-11-21
2019-28-2534
Objective This paper explores the usage of Altair simulation driven concept process, C123 for developing the chassis frame of the SUV along with Multidisciplinary optimisation tool. C123 process is useful for strategic & systematic usage of optimisation to generate design alternatives, trade-off information, best balanced designs, design sensitivities, to actively support the concept development process on daily basis. Methodology C123 is used for developing initial concept design of the chassis frame of the SUV. C123 process is independent of vehicle architectures, manufacture process (e.g. extrusions, sheet metal) & material selection (e.g. metals, composites, mixed etc.) and platform sharing strategy. C1 process is used for identification of optimum Structural Layout, C2 is for rapid optimum Sizing of idealized Sections, C3 is used for detailed optimum Sizing of Manufacturable Sections. Automatic process is used for handling pre and post processing process very efficiently.
Technical Paper

PMSM motor drive for Electric Vehicle applications

2019-11-21
2019-28-2475
To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

2019-11-21
2019-28-2423
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained.
Technical Paper

Development of PCX HEV

2019-11-21
2019-28-2454
In the fourth-generation model of the 2018 PCX, the basic structure of frame was reviewed to make it lighter and rigid. Weight reduction was also adapted to its wheels. These enhancements contributed to its increased dynamic performances. The engine performances were enhanced as well, and all these features made it possible to provide a high-quality riding with composure of rider’s mind. In addition, we developed hybrid model PCX HYBRID that uses an ACG starter directly connected to a crankshaft as a drive assist system and realized pleasurable ride feeling with a more direct drive response.
Technical Paper

REDUCTION OF STEERING VIBRATION WITH THE APPLICATION OF DYNAMIC TESTING AND ANALYSIS

2019-11-21
2019-28-2421
KEYWORDS: Steering System, Engine Vibrations, Dynamics, Modal Testing, Modal Analysis, ABSTRACT - In modern agriculture, the tractor’s use is indispensable and essential for various operations like cultivation, soil preparation, pulverization and many more. However, despite being efficient machines, tractors may be subjected to different level of vibrations in various parts of their structure. The vibration often plays the key cause of invalidation and component failures and also, affecting the ride and comfort. Since it is known that such vibration factors can affect the behavior in many ways, an understanding of their dynamic response is warranted. In this paper, case study related to reduction of steering system vibration is presented. Objective and Background: Vibration reduction is linked with the reduction either at source or on path. For such, it is necessary to know the reality of machines, component and mechanisms to mitigate the vibration levels on the tractor.
Technical Paper

Multi body dynamic simulation of tyre traction trailer

2019-11-21
2019-28-2430
Tyre Traction Trailer is a device designed to find the Peak Brake co-efficient of C2 and C3 tyre as per ECE R117. The trailer is towed by the truck and is braked suddenly to evaluate braking co-efficient of specimen tyre. It is a single wheel trailer equipped with load cell to capture tire loads (Normal and longitudinal)while braking. Traction Trailer is modelled in MSC Adams and rigid body simulation is carried out for static stability of the system. Dynamic simulations were performed to understand locking of wheels during braking. Body frame was further modelled as flex body to perform structural analysis of the frame. The paper contains stress and deformation plots of trailer Structure under various loading conditions, change in Centre of gravity, weight transfer and forces on springs during braking and cornering, plots of tractive and normal load on tyre during braking.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Performance Gains of Load Sensing Brake Force Distribution in Motorcycles

2019-11-21
2019-28-2426
Commercial motorcycles and scooters incorporate independent circuits for front and rear brake actuation, thus precluding load dependent brake force distribution. In all cases of manual brake force modulation between the front and rear wheels, there is poor compensation for the changes in wheel loads on the account of longitudinal weight transfer, thus making it is challenging to provide an adequate braking force to each wheel. The ratio in which the braking force should be distributed between the front and the rear wheels is dependent on the motorcycle geometry, weight distribution, mechanical sizing of braking system components, and is a variable based on the deceleration. This connotes that a fixed value of front and rear braking forces can be optimized for only a narrow range of motorcycle’s deceleration. Maximum braking performance occurs just prior to wheel lockup, as a sliding tire provides less grip than a rolling tire.
Technical Paper

Spring and damper tuning of an ATV to reducing transmissibility

2019-11-21
2019-28-2401
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability.
Technical Paper

Improved update over-the-air solution through standardization of ‘software/firmware package format and flash jobs’

2019-11-21
2019-28-2435
This paper investigates and proposes the possibilities of standardizing the software/firmware package format and flash jobs in order to provide the possibility of productizing the update-over-the-air solution regarding on-board vehicle components and make use of it in all OEMs with minimum configuration changes and customization. The update-over-the-air solution in the automotive sector is provided by various suppliers and needs to be customized to meet various OEMs requirements. Possible Variants of OEM requirements are: • Variant 1 o Customer Portal + Backend + vehicle on-board components solution from supplier • Variant 2 o Customer Portal + Backend solution from OEM o Vehicle on-board components from supplier • Variant 3 o Backend from OEM o Customer Portal + vehicle on-board components from supplier ODX, VBF, and many other formats from OEMs include software/firmware packages.
Technical Paper

Analysis of pressure variation in wheel with the aid of wheel speed sensor

2019-11-21
2019-28-2450
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions.
X