Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Telematics: A Solution to Reduce Road Accidents on Indian Roads.

2019-11-21
2019-28-2446
The number of fatalities due to road accidents in India is increasing at an alarming rate. In 2017, around 4.6 lakhs road accidents were reported due to which around 1.48 lakh people lost their lives. The accident severity i.e. number of deaths per 100 road accidents is reported to be at 31.8 - worst in a period of more than two decades. Passenger vehicles (two wheeler & four wheeler) constituted maximum road accidents, 59% combined. So, a strong sense of responsibility lies on vehicle manufacturers part to help the government agencies to reduce road accidents in India. Majorly road accidents are caused due to bad driving habits, road infrastructure problems, vehicle quality issues, unfavorable weather conditions and India unique chaos on roads. This paper highlights use of telematics to counter road accidents caused by bad driving habits of Indian drivers. Out of the bad driving habits, in 2017, over-speeding accounted for 67% of the road accident deaths.
Technical Paper

DEVELOPMENT OF A FLEET MANAGEMENT SYSTEM FOR AN OFF-HIGHWAY VEHICLE

2019-11-21
2019-28-2439
DEVELOPMENT OF A FLEET MANAGEMENT SYSTEM FOR AN OFF-HIGHWAY VEHICLE V.Jagannathan 1.a* , B.Jaiganesh 2.b & S.Sudarsanam 3.c Mahindra & Mahindra Limited, Mahindra Research Valley, Mahindra World City, Anjur PO, TN, India Corresponding author Email- V.JAGANNATHAN@mahindra.com Managing an off-highway vehicle fleet during validation is a challenging task. Complexity is acquainted when more than 100 vehicles with different horse power (hp) & with different product configuration working across India and other parts of countries. Traditionally, a tractor validation involves data collection such as usage hours (Hour meter reading on cluster), locations etc. which are recorded in spread sheet and updated to the respective project owners on daily basis through mail communications. A manual recording and consolidation of tractors validation status is prone to error, reiterative work, consumes more resource and effort.
Technical Paper

IOT based Battery Diagnostics for Battery swapping station.

2019-11-21
2019-28-2441
An electric vehicle is significantly promoted by government and industry to reduce carbon footprint and effective energy management. IC engines get replaced by the battery and diagnosis parameters of engine also need to replace with battery parameters. Main objective is to provide analysis of battery to battery swapping stations. State of charge and state of health plays important role in battery management system and vehicle performance. State of health estimation has many techniques, but large equipment needs for it and become costlier and bulkier. Batteries internal resistance increases as it gets degraded, proposed technique based on adaptive method which didn’t need any extra hardware, this technique identifies the health based on degraded capacity. Cloud platform is used to store the data and process it and display to users and swapping station. Status updating unit located on battery is connected to cloud and it gives complete analysis of battery to vehicle users.
Technical Paper

Connected Vehicles – Ecosystem for services and Challenges

2019-11-21
2019-28-2447
This paper outlines the different aspects of the Connected Vehicle concept. The blocks required to implement a Connected Vehicle infrastructure is also discussed in detail. Two main types of short-range wireless communication are discussed in Connected Vehicles context namely Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) communication. An overview of the evolution of the Connected Vehicle and its operational aspects are presented together with its application. The impacts and potential operational benefits of the Connected Vehicle are discussed. The various challenges to architect non functional requirements in the case of Connected Vehicle technology are identified and discussed.
Technical Paper

Enhanced Road condition monitoring for developing countries

2019-11-21
2019-28-2462
"According to Data on Road accidents in India by Transport Research Wing of Ministry of Road Transport & Highways, more than 4 Lakhs road accidents happened every year from year 2003 to 2017. Poor road conditions and badly designed roads are the common cause of road accidents besides the driver's negligence. Poor roads and badly designed speed breakers are common in developing countries. Apart from accidents, poor road conditions can cause excessive fuel consumption & damage to vehicles. Road condition monitoring solutions aim to warn the drivers of upcoming bad patch on the road and optionally report road conditions to authorities. There are multiple existing solutions that use motion sensors and GPS to detect a bad patch on the road. The presented solution builds over capability of existing solutions by adding useful features making it more practical and useful.
Technical Paper

A Self-Intelligent Traffic Light Control System based on Traffic Environment using Machine Learning

2019-11-21
2019-28-2459
In this paper, we will detect and track vehicles on a video stream and count those going through a defined line and to ultimately give an idea of what the real-time on street situation is across the road network. Our major objective is to optimize the delay in transit of vehicles in odd hours of the day. It uses YOLO object detection technique to detect objects on each of the video frames And SORT (Simple Online and Realtime Tracking algorithm) to track those objects over different frames. Once the objects are detected and tracked over different frames a simple mathematical calculation is applied to count the intersections between the vehicles previous and current frame positions with a defined line. At present, the traffic control systems in India, lack intelligence and act as an open-loop control system, with no feedback or sensing network. Present technologies use Inductive loops and sensors to detect the number of vehicles passing by.
Technical Paper

Noise and vibration simulations method for electric hybrid tractor powertrain.

2019-11-21
2019-28-2469
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles.
Technical Paper

Development of PCX Electric

2019-11-21
2019-28-2470
We developed the electric motorcycle model “PCX ELECTRIC” that satisfies usability under the traffic environment in apan and ASEAN’s motorcycle sales major countries. The PCX ELECTRIC features easily removable battery packs, which practically helps eliminate the waiting time associated with charging the battery. The compactly designed EV system, which is efficiently packaged in the vehicle, uses two removable 48 V battery packs connected in series to realize a 96 V system suitable for driving the electric motorcycle. The EV system mounted on the body of the 2018 PCX achieves a motor power of 4.2 kW, top speed of 60 km/h, and cruising range of 41 km (at a steady 60 km/h). In addition, we developed a highly-convenient battery attaching system that enables fixing of the battery to the vehicle body and engaging of the connectors with a single action operation.
Technical Paper

Improved Performance of Electric Vehicles with Supercapacitor

2019-11-21
2019-28-2468
Background: Due to Environmental concern worldwide, Mobility is under pressure to shift gear from fossil fuel to Electric. This is Rebirth of Electric Mobility is with state’s initiative, but it is facing bigger challenges than the 1900s era. Fossil fuel vehicles have already carved the benchmark on ease of range per charge, and time of charge (filling of fossil fuel), which needs to be at least matched by Electric Vehicles. The success of electric vehicles will not only be driven by state policy but also by performance and Economic Viability. While at this introduction level state is trying best to offset cost by way of subsidy/tax-sops offering. So, in clear terms “Performance of Electric Vehicles” need to be addressed and enhanced to put them in main stream in place of fossil fuel vehicles. In last 100 years there has been significant technological development in Motors, and Energy Storage, which is base of Electric mobility.
Technical Paper

Low Voltage Powertrain in Light Electric Vehicles

2019-11-21
2019-28-2467
Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory.
Technical Paper

Development of Emergency Vehicle Approaching Alert System (EVAAS)

2019-11-21
2019-28-2465
This paper discusses the need for Emergency Vehicle Approaching Alert System (EVAAS) and building of EVAAS components for OTT (over- the-top content), and Media providers. According to a study by the Indian Journal of Surgery in 2006, 80 per cent of road accident victims in India do not receive any emergency medical care (Ambulance) within this ‘golden hour - the first hour after a traumatic injury, when emergency treatment is most likely to be successful.’ Due to increasing population and constructions of Roads and Buildings, Emergency Vehicles are not able to reach the desired location. Hence, there is a need of an Emergency Vehicle Approaching Alert System (EVAAS) in INDIA.
Technical Paper

ELECTRIC VEHICLE CHARGING STRATEGIES WITH REDUCED GOVERNMENT SPENDING AND ON-DEMAND CHARGE AVAILABILITY

2019-11-21
2019-28-2477
– Objective: Objective of the paper is to study and explore the electric vehicle (EV) charging infrastructure enhancing options. The automotive industry today is at the junction of many disruptive technologies. Electric vehicle technology is one of the leading disruptive technologies. While automotive companies are embracing the electric vehicle technology by investing significantly in the field of research, technology and training, the question that is still largely un-answered is what will be the structure of the charging infrastructure. One reason for this ambiguity is that majority of investors believe that the responsibility for development of charging infrastructure is owned by government or government bodies. Methodology: In this paper we will discuss about other alternates to charging infrastructure developed by government or government bodies.
Technical Paper

Approach for standardization of Advanced Driving Assistance System (ADAS) in India

2019-11-21
2019-28-2464
Authors: Aditi Sethi1, Siddhanta Shrivastava2, Madhusudan Joshi3 Organization: 1,2,3 International Centre for Automotive Technology, Manesar Introduction: With the increasing utilization of electronics in Indian automobile industry, there is an essential requirement for standardizing the functional safety of sub-systems that constitute advanced driving assistance system (ADAS) as it would be the foundation stone for the automated vehicles in future. These systems assist the driver and the driving process, further increasing the car safety and road safety, subsequently reducing human error. Due to interaction of several electronic control units (ECUs) in a vehicle and complexity of the system, electronic stability plays a vital role. Therefore, the standards shall be more performance oriented and technology neutral. They shall also cover validation tests associated with safety, mechanical rigidity, durability, environmental protection and electromagnetic compatibility.
Technical Paper

Realtime Tuning and optimization of EV traction motors with controllers on E-motor testbench

2019-11-21
2019-28-2478
The need for dedicated development of indigenous electric power-train is becoming much essential in the recent times with upcoming trends and policies. Hence, The validation and optimization of the newly developed electric power-train becomes much crucial in order to ensure smooth real world operation. This can be only possible in E-motor test benches with dedicated equipment for thorough evaluation. Also, there are no practical limitations to check the peak characteristics in a controlled laboratory environment. Initially, the motor is setup by mechanically coupling with the dynamo-meter and the controller in the open loop method with constant parameters to check steady state operability without load or external parameters that affect the torque production and speed of the drive. Then progresses to closed loop method incorporating the feedback control and external parameters including torque loading at the shaft from the dynamo-meter.
Technical Paper

Electric Commercial Vehicles And Charging Solutions

2019-11-21
2019-28-2476
Objective : Objective of the paper is to acquaint the audience with the concept of electric vehicles, Powertrain components used in an electric bus, Siemens contribution to the field of Electromobility, Typical configurations used in an electric bus, challenges and current limitations, emerging Technologies, future, how to address the future charging infra requirement. Methodology : The subject shall be discussed with the audience through a presentation coupled with Explanation by the presenter. The topic shall be opened with the concept of electromobility followed By history of electromobility at Siemens, contribution to the field of electro mobility, typical configurations of electric vehicles, Advantages of electric vehicles vis a vis conventional diesel buses, typical configurations of an electric bus, feasibility of electric buses for various transport services. Comparison of induction motor Vs.
Technical Paper

PMSM motor drive for Electric Vehicle applications

2019-11-21
2019-28-2475
To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Optimization of An EV Controller Design For A Three Wheeler BOVs - EMC Approach

2019-11-21
2019-28-2474
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. Three wheeler Battery Operated Vehicles (BoVs) are a special category of electric vehicles (EVs) as far as EMC compliance is concerned. The problem mainly lies with the open body design and cost cutting measures being exercised by the manufactures which makes Electromagnetic compatibility (EMC) compliance challenging. Objective: Though it is sometimes possible to resolve EMC malfunctions related to motor power cable, cables & wiring harness etc. using external techniques post design stage, but controller being a closed and typical element makes it difficult to improve against EMC malfunctions using external techniques. This paper would concentrate on the controller design parameters and improvement of the same in terms of Electromagnetic compatibility (EMC) and performance efficiency at the design stage itself.
Technical Paper

Non-linear dynamic Modeling, Simulation and Control of Five-Phase 10/8 Switched Reluctance Motor for Electric Vehicle Application

2019-11-21
2019-28-2473
The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. SRM possess several advantages such as low cost, high efficiency, high power density, fault-tolerant and it can produce extended constant power region, and this makes SRM as viable alternative over conventional PM drives. Objective: The objective of this paper is to establish proof of theoretical concepts related to SRM. The key to achieve an effective SRM modeling is to use a methodology that allow the nonlinearity of its magnetic characteristics to be represented while maximizing the simulation speed. This paper represents how magnetization data obtained from FEA in the form of look up tables is most appropriate way to represent SRM model. In this paper, performance analysis of SRM is done with the help of Open loop and Closed loop MATLAB simulations. These dynamic simulations of SRM will assist in understanding behavior of SRM in various loading and speed conditions.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
X