Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

HORIZON Europe Project AeroSolfd: GPF-Retrofit for Cleaner Urban Mobility

2023-08-28
2023-24-0114
Ultrafine particles, in particular solid sub-100 nm particles pose high risks to human health due to their high lung deposition efficiency, translocation to all organs including the brain and their harmful chemical composition; due to dense traffic, the population in urban environments is exposed to high concentrations of those toxic air contaminants, despite these facts, they are still widely neglected. Therefore, the EU-Commission set up a program for clean and competitive solutions for different problem areas which are regarded to be hotspots of such particles. HORIZON AeroSolfd is an EU project, co-funded by Switzerland that will deliver affordable, adaptable, and sustainable retrofit solutions to reduce exhaust tailpipe emissions from petrol engines, brake emissions and pollution in semi-closed environments.
Technical Paper

Thermal Model for the analysis of the Thermal Runaway in Lithium-Ion Batteries using Accelerating Rate Calorimetry

2023-08-28
2023-24-0162
Accelerating rate calorimetry (ARC) has emerged as a powerful tool for evaluating the thermal behavior of Li-ion cells and identifying potential safety hazards. In this work, a new physical thermal model has been developed based on the first law of thermodynamics for analyzing heat and mass generated by Lithium-ion battery cells under thermal abuse conditions during EV-ARC tests. The analysis is based on the experimental data gathered from an ARC, including different temperatures and pressure inside a gas-tight canister located in the calorimeter chamber, as well as the gas composition at the end of the test. The energy balance of the battery cell includes: the energy released by the cell, the internal energy of the elements inside the canister, heat transfer between elements inside the canister, as well as the mass transfer between the cell and the gases inside the canister.
Journal Article

Electrically Interconnected Suspension and Related Technologies: A Comprehensive Review

2023-08-10
Abstract The electrically interconnected suspension (EIS) is a novel suspension system that has gained attention due to its potential to improve vehicle vibration control. This article provides a comprehensive review of EIS and related technologies. It starts with an overview of the research on hydraulic interconnected suspension (HIS) and its limitations. Then, it discusses the development of the electromagnetic suspension (EMS) and its advantages in adjusting mechanical characteristics. The article focuses on the electrical network and decoupling control characteristics of EIS, demonstrating the principle of synchronous decoupling control of multiple vibration modes. A comparison of the structure and control characteristics of EIS and HIS highlights the advantages of EIS in vehicle vibration control.
Standard

Fitting End, Dimensions, Fluid Systems Port Connection, Metric

2023-08-01
CURRENT
MA2093A
This design standard specifies the dimensions of the externally threaded fitting end to be assembled into an internally threaded fluid system port, using an elastomeric o-ring for sealing. Fitting end dimensions and o-ring sizes agree with ISO 7320-1985.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Research Report

Micromobility, User Input, and Standardization

2023-07-18
EPR2023015
Micromobility is often discussed in the context of minimizing traffic congestion and transportation pollution by encouraging people to travel shorter (i.e., typically urban) distances using bicycle or scooters instead of single-occupancy vehicles. It is also frequently championed as a solution to the “first-mile/last-mile” problem. If the demographics and intended users of micromobility vary largely by community, surely that means we must identify different reasons for using micromobility. Micromobility, User Input, and Standardization considers potential options for standardization in engineering and public policy, how real people are using micromobility, and the relevant barriers that come with that usage. It examines the history of existing technologies, compares various traffic laws, and highlights barriers to micromobility standardization—particularly in low-income communities of color.
Book

Metallic Materials Properties Development and Standardization (MMPDS) Handbook - 2023

2023-07-05
The Metallic Materials Properties Development and Standardization MMPDS-2023 supersedes MMPDS-17 and prior editions of the MMPDS Handbook as well as all editions of MIL-HDBK-5, Metallic Materials and Elements for Aerospace Vehicle Structures Handbook that was maintained by the U.S. Air Force. The last edition, MIL-HDBK-5J was cancelled by the U.S. Air Force in March 2006. This document contains design information on the mechanical and physical properties of metallic materials and joints commonly used in aircraft and aerospace vehicle structures. All information contained in this Handbook has been reviewed and approved using a standardized process. The development and ongoing maintenance process involves certifying agencies, including the FAA, DoD, and NASA, and major material suppliers and material users worldwide. The information and procedures in this Handbook are continuously reviewed and modified or removed as determined to be appropriate.
Standard

Cast Shot and Grit Size Specifications for Cleaning and Peening

2023-06-27
CURRENT
J444_202306
This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
Standard

Brake Insulator Damping Measurement Procedure

2023-06-19
CURRENT
J3001_202306
This procedure is applicable to modes from 500 and 13,000 Hz. The parameters measured with this procedure are defined as the damping factor, ξ for first nine vibration modes of the beam. The measurement will be done in free-free conditions and with temperature.
Technical Paper

Experimental Investigation of a CRM65 Wingtip Mockup under Appendix C and Appendix O Icing Conditions

2023-06-15
2023-01-1386
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included.
Technical Paper

Icing Simulation Framework: A Predictive Approach from Nucleation to Runback

2023-06-15
2023-01-1460
This paper provides an overview of the state-of-art multiscale “Icing Simulation Framework” capability developed at Raytheon Technologies Research Center. Specifically, the application of this framework to simulate droplet runback and runback icing will be presented. In summary, this high-fidelity framework tracks the physical mechanisms associated with droplet dynamics, ice nucleation, growth and interaction with the environment (e.g. adhesion, crystal growth, evaporation, sublimation, etc.) across all relevant scales (including nucleation at <10-7m to ~10-6m of coating/environment interaction to 10-2m of the component) which allows a rigorous investigation of how different environmental (e.g. LWC, MVD, pressure, velocity and temperature) and substrate (e.g. coating molecular and macroscopic specifications) characteristics affect the icing behavior.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

Time Resolved 3D Scanning of Ice Geometries in a Large Climatic Wind Tunnel

2023-06-15
2023-01-1414
In the scope of development or certification processes for the flight under known icing conditions, aircraft have to be tested in icing wind tunnels under relevant conditions. The documentation of these tests has to be performed at a high level of detail. The generated data is used to prove the functionality of the systems, to develop new systems and for scientific purposes, for example the development or validation of numerical tools for ice accretion simulation. One way of documenting the resulting ice geometry is the application of an optical 3D scanning or reconstruction method. This work investigates and reviews optical methods for three-dimensional reconstructions of objects and the application of these methods in ice accretion documentation with respect to their potential of time resolved measurement. Laboratory tests are performed for time-of flight reconstruction of ice geometries and the application of optical photogrammetry with and without multi-light approach.
Technical Paper

Cold Soaked Fuel Frost Roughness Evolution on a Simulated Integrated Fuel Tank with Aluminum Skins

2023-06-15
2023-01-1442
Cold soaked fuel frost (CSFF) is frost that forms on aircraft wing surfaces following a flight because of cold excess fuel remaining in integrated fuel tanks. Previous investigations by Zhang et al. (2021a) and Zhang et al. (2021b) have focused on experimental measurements and correlation development for frost observed using a small frost wind tunnel employing a thermo-electric cooler to impose a surface temperature for a range of environmental conditions. To model the CSFF approach in more detail, an experimental facility was developed and described by McClain et al. (2020) using a thermal model of an integrated wing fuel tank placed inside of a climatic chamber. In this paper, experimental measurements of CSFF are presented using two aluminum wing skins. One of the skins was created using an aluminum rib structure, and the other skin was created without the rib.
Technical Paper

Development of a Robust Surface Ply for Pneumatic Deicers

2023-06-15
2023-01-1403
The purpose of this paper to is to review the methodology applied by Collins Aerospace to develop, test and qualify a more robust surface ply rubber compound that has demonstrable improvements in durability and performance at sub-freezing temperatures. Using in-service products as a reference, pneumatic deicers in use on regional turboprop applications were selected as a basis for operational characteristics and observed failure modes. Custom test campaigns were developed by Collins to comparatively evaluate key characteristics of the surface ply material including low temperature elasticity, erosion durability, and fluid susceptibility. Collins’ proprietary engineered rubber formulations were individually evaluated and built into fully functional test deicers for component level testing to DO-160G environmental exposure, comparative ice shed performance in Collins’ Icing Wind Tunnel and erosion in Collins’ Rain Erosion Silo.
Technical Paper

Multi-step Ice Accretion by Immersed Boundaries

2023-06-15
2023-01-1484
The paper describes a tools’ suite able of analyzing numerically 3D ice-accretion problems of aeronautical interest. The methodology consists of linking different modules each of them performing a specific function inside the ice-simulation chain. It has been specifically designed from the beginning with multi-step capability in mind. Such a feature plays a key role when studying the dynamic evolution of the icing process. Indeed, the latter has the character of a multi-physic and time-dependent phenomenon which foresees a strong interaction of the air- and water fields with the wall thermodynamics. Our multi-layer approach assumes that the physical problem can be discretized by a series of pseudo-steady conditions. The simulation process starts with the automatic generation of a Cartesian three-dimensional mesh which represents the input for the immersed boundary (IB) RANS solver.
X