Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact of Vehicle Electrification on Brake Design

2019-11-21
2019-28-2499
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
Technical Paper

Miniaturized and sleek protective device

2019-11-21
2019-28-2535
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size.
Technical Paper

PMSM motor drive for Electric Vehicle applications

2019-11-21
2019-28-2475
To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

2019-11-21
2019-28-2423
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained.
Technical Paper

Development of PCX HEV

2019-11-21
2019-28-2454
In the fourth-generation model of the 2018 PCX, the basic structure of frame was reviewed to make it lighter and rigid. Weight reduction was also adapted to its wheels. These enhancements contributed to its increased dynamic performances. The engine performances were enhanced as well, and all these features made it possible to provide a high-quality riding with composure of rider’s mind. In addition, we developed hybrid model PCX HYBRID that uses an ACG starter directly connected to a crankshaft as a drive assist system and realized pleasurable ride feeling with a more direct drive response.
Technical Paper

A Comparative study to assess the effect and cause of Ride Quality & Comfort of Passenger Vehicle with Subjective Correlation

2019-11-21
2019-28-2410
Research Objective The importance of evaluating ride comfort with high degrees of accuracy objectively and its correlation with subjective perception is increasing day by day because of the long duration of the driving experience. The complex motion of the vehicle which is the combination of heave, roll and pitch motion is responsible for causing extreme uneasiness to the driver as well as the passenger. In this paper, ride comfort evaluation is done on the highway with similar traffic conditions with the help of Vibration Dose Value Analysis, Suspension Working Space and Ride Diagram methods for two hatchbacks and its correlation with the complex motion like choppiness of the vehicle is established that will help us to enhance the driver ride experience. Methodology The ride testing is performed for two hatchbacks on a highway road with different kinds of terrain ranging from highly uneven road roughness to moderately smooth surface for a speed range of 60-100 kmph.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

REDUCTION OF STEERING VIBRATION WITH THE APPLICATION OF DYNAMIC TESTING AND ANALYSIS

2019-11-21
2019-28-2421
KEYWORDS: Steering System, Engine Vibrations, Dynamics, Modal Testing, Modal Analysis, ABSTRACT - In modern agriculture, the tractor’s use is indispensable and essential for various operations like cultivation, soil preparation, pulverization and many more. However, despite being efficient machines, tractors may be subjected to different level of vibrations in various parts of their structure. The vibration often plays the key cause of invalidation and component failures and also, affecting the ride and comfort. Since it is known that such vibration factors can affect the behavior in many ways, an understanding of their dynamic response is warranted. In this paper, case study related to reduction of steering system vibration is presented. Objective and Background: Vibration reduction is linked with the reduction either at source or on path. For such, it is necessary to know the reality of machines, component and mechanisms to mitigate the vibration levels on the tractor.
Technical Paper

Multi body dynamic simulation of tyre traction trailer

2019-11-21
2019-28-2430
Tyre Traction Trailer is a device designed to find the Peak Brake co-efficient of C2 and C3 tyre as per ECE R117. The trailer is towed by the truck and is braked suddenly to evaluate braking co-efficient of specimen tyre. It is a single wheel trailer equipped with load cell to capture tire loads (Normal and longitudinal)while braking. Traction Trailer is modelled in MSC Adams and rigid body simulation is carried out for static stability of the system. Dynamic simulations were performed to understand locking of wheels during braking. Body frame was further modelled as flex body to perform structural analysis of the frame. The paper contains stress and deformation plots of trailer Structure under various loading conditions, change in Centre of gravity, weight transfer and forces on springs during braking and cornering, plots of tractive and normal load on tyre during braking.
Technical Paper

Accounting the variabilities into squeak and rattle predictions

2019-11-21
2019-28-2402
Squeak and Rattle (S&R) are the dominant undesired noises which adjudge the perceived quality of a vehicle. It's a foremost problem which needs to be identified and eliminated at a design stage to develop a robust vehicle, which also aids in pacifying the physical testing and warranty claim costs. A Finite Element model of the complex plastic dashboard has been analyzed to identify risks and the root cause of S&R problem under dynamic and static loading conditions, using E-line methodology. These complex transient problems are highly influenced by various parameters like gap variability, temperature, the coefficient of thermal expansion, thickness, and material properties. This paper elaborates the detailed investigation conducted using stochastic simulations to evaluate the individual and combined impact of each parameter on S&R performance
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Performance Gains of Load Sensing Brake Force Distribution in Motorcycles

2019-11-21
2019-28-2426
Commercial motorcycles and scooters incorporate independent circuits for front and rear brake actuation, thus precluding load dependent brake force distribution. In all cases of manual brake force modulation between the front and rear wheels, there is poor compensation for the changes in wheel loads on the account of longitudinal weight transfer, thus making it is challenging to provide an adequate braking force to each wheel. The ratio in which the braking force should be distributed between the front and the rear wheels is dependent on the motorcycle geometry, weight distribution, mechanical sizing of braking system components, and is a variable based on the deceleration. This connotes that a fixed value of front and rear braking forces can be optimized for only a narrow range of motorcycle’s deceleration. Maximum braking performance occurs just prior to wheel lockup, as a sliding tire provides less grip than a rolling tire.
Technical Paper

Spring and damper tuning of an ATV to reducing transmissibility

2019-11-21
2019-28-2401
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability.
Technical Paper

Analysis of pressure variation in wheel with the aid of wheel speed sensor

2019-11-21
2019-28-2450
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions.
Technical Paper

Vehicle Interior cleanliness tracker

2019-11-21
2019-28-2466
The future of mobility is being driven towards fully autonomous driving. As a result, people spend majority of the time in vehicles for chores other than driving. The focus of automotive makers shifts towards providing best-in-class passenger comfort. One of the least focused area in passenger comfort is vehicle interior cleanliness which requires periodic human intervention. An intelligent vehicle can outsmart a human by self-caring to maintain the cleanliness elements on floor, seat and roof. This paper addresses subjects like wetness, dirt and stains in the vehicle interior utilizing the capability of Interior sensing platform. An internally mounted camera in the vehicle can capture images of the interior and apply image processing techniques to identify the subjects mentioned above. The wetness on the floor mats can lead to moldy odor, corrosion, failure of the electronic components in the car.
Technical Paper

Realtime Tuning and optimization of EV traction motors with controllers on E-motor testbench

2019-11-21
2019-28-2478
The need for dedicated development of indigenous electric power-train is becoming much essential in the recent times with upcoming trends and policies. Hence, The validation and optimization of the newly developed electric power-train becomes much crucial in order to ensure smooth real world operation. This can be only possible in E-motor test benches with dedicated equipment for thorough evaluation. Also, there are no practical limitations to check the peak characteristics in a controlled laboratory environment. Initially, the motor is setup by mechanically coupling with the dynamo-meter and the controller in the open loop method with constant parameters to check steady state operability without load or external parameters that affect the torque production and speed of the drive. Then progresses to closed loop method incorporating the feedback control and external parameters including torque loading at the shaft from the dynamo-meter.
Technical Paper

Rapid Prototyping and Implementation of traction motor drive for E- Mobility

2019-11-21
2019-28-2472
Objective / Question: Is it possible to extend the envelope of simulation driven design and its advantages to development of complex dynamic systems viz. traction motor drives? The objective that then follows is how to enable OEM/Tier-1s to reduce wastes in the process of traction motor controller design, development, optimization and implementation. Motor control design to validation process is time consuming and tricky! Additionally, the requirement of software knowledge to write code to implement drive engineer's control ideas. The challenges here are - to name a few - algorithm for real time, addressing memory constraints, debugging, comprehending mathematical overflows, portability & BOM cost. These introduces wastes in parameters like time, cost, performance, efficiency and reliability. Methodology: Developing a new traction motor controller for E Mobility takes 18 - 24 months typically. 2 distinct activities take place in a loop.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
X