Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Investigation of Setting Input Process Parameters for Getting Better Product Quality in Machining Of AM60 Magnesium Alloy – TOPSIS and ANOVA Approach

2019-10-11
2019-28-0136
This investigation shows the improvement of Machining parameters on AM-60 Mg alloy made with the help of Gravity Die Casting and with reactions upheld symmetrical cluster with “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS). Which Focuses on the streamlining of Machining parameters utilizing the system to get least surface Roughness (Ra), Minimum Tool Wear, minimum Cutting Time, Power Requirement and Torque and Maximize MRR. A good amount of Machining tests was directed in view of the L9 symmetrical exhibit on CNC machine. The trials were performed on AM60 utilizing cutting device of grade-ISO 460.1-1140-034A0-XM GC3 of 12,16 and 25 mm width with cutting point of 140 degrees, all throughout the test work under various cutting conditions. TOPSIS and ANOVA were utilized to work out the major vital parameters like Cutting speed, feed rate, Depth of Cut and Tool Diameter which influence the Response. The normal qualities and estimated esteems are genuinely close.
Technical Paper

Mechanical and Metallurgical analysis of HSLA steel for Gas Tungsten Arc Welding with different shielding gases

2019-10-11
2019-28-0069
The special designed HSLA (High Speed Low Alloy) Steel is most commonly used in Naval Steel Structures and aircraft structures due to its indigenous properties. The aim of this paper is used to investigate the effect of shielding gas in the Gas Tungsten Arc Welding process. The sheet plate of size 300mmx150mmx10mm is taken and welded by GTAW process using argon and helium on the shielding gas. DMR 249A plates are welded by GTAW by using helium and argon as shielding gas with a flow rate of 16 L/min, the interpass temperature is 140ᵒ C and the heat input is less than 1.2KJ/min which is maintained to get a balanced phases of α and γ where the impact toughness, Tensile and micro hardness was studied with different shielding gas and the metallurgical properties were analysed in the base metal, heat affected zones and weld zones. The sheets contain 1.9%Ti and 6.2% Ni and the weld beads were studied for both the type of shielding gases.
Technical Paper

Thermal behavior analysis of Lithium ion cells used in EVs and HEVs

2019-10-11
2019-28-0163
The batteries for electric vehicles (EV) generate heat during discharging cycles. During these rapid discharge cycles the temperature of cell may increase above allowable limits. The high temperature of lithium ion cell is the primary factor affecting the cell performance and life. To develop efficient cooling mechanism for batteries, thermal behaviour of secondary cell is must know. In this research, experimentally the thermal behaviour analysis of primary lithium ion cells for constant current discharge cycles with different current rates for each cycle is evaluated. The experiments were carried out at three discharge cycles of 1C, 2C and 3C rates and two battery chemistries of secondary cells have been considered for analysis. The temperature of cell was measured using thermal imager and increase in overall cell surface temperature at different discharge rates has been studied.
Technical Paper

Multi Characteristics Optimization of Treated Drill Tool in Drilling Operation Key Process Parameter Using TOPSIS and ANOVA Technique

2019-10-11
2019-28-0055
To survive in the present global competitive world, the manufacturing sectors have been making use of various tools to achieve the high quality products at a comparatively cheaper price. Appropriate cutting set up must be used to further better the machinability of a work piece material. A longer life of the tools and equipments are important factors in any industry. Since the inception of the machine tool industry, cutting tool life and tool wear remain a subject of deep interest to study its failure and improvement. The present study finds out the optimum cutting results in drilling of AM60 magnesium alloy using different cryogenically treated cutting inserts. The Utility concept coupled with Taguchi with Multi response approach (TOPSIS) was employed. According to Analysis of variance (ANOVA) results, the feed was the major dominating factor followed by the cutting speed.
Technical Paper

Investigation of thermal shock resistance of CeO2 coating on Titanium alloy by magnetron sputtering

2019-10-11
2019-28-0103
Titanium alloy (Grade V) is used in aerospace, medical, marine and chemical processing industries. To improve the thermal shock resistance and corrosion resistance of the titanium alloy at elevated temperatures, Thermal barrier coating (TBC) has been predominantly used. Cerium oxides have been proposed as TBC, due to their high thermal expansion coefficient, higher thermal shock resistance, good adhesion strength, low corrosion rate and excellent tribological performance. In this study, CeO2 were coated on Titanium alloy by magnetron sputtering by varying the deposition time. The microstructure and mechanical properties of CeO2 coatings were systematically investigated. Deposition time was varied as 30 mins, 60 mins and 90 mins respectively, to achieve the variation in thickness of the coating on the substrate. The thickness of the coated specimen was measured by atomic force microscopy and found to be 500 nm, 180 nm and 70 nm respectively.
Technical Paper

Mechanical and corrosion behaviour of 7075 aluminium matrix composite reinforced with TiC and Al2O3

2019-10-11
2019-28-0094
Various research regarding new methods of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide application of aluminium in aerospace and automobile Industry, demands improved mechanical properties with little to zero increment in weight. This work is based on the fabrication of hybrid metal matrix composites of 7075 aluminium alloy with the addition of TiC (Titanium Carbide) and Al2O3(Aluminium Oxide) reinforcements is fabricated using stir casting technique. Weight percentage of 5%, Al2O3 8% and Tic 12%, Tic 15% and Al2O3 10%. Samples are prepared for each mass distribution . Varying weight fraction samples are prepared to have a proper comparative study of the mechanical properties. In the fabrication we gradually increased the weight of TiC and Al2O3 as we progressed with the experiment.. The objective is to have a clear idea of mechanical properties variation with variation in reinforcement.
Technical Paper

Corrosion characteristics on friction stir welding of dissimilar AA2014/AA6061 alloy for automobile application.

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to below recrystallization temperature. FSW mostly avoids welding defects like hot cracking and porosity which are mainly in conventional welding techniques due to alloy’s higher heat dissipating nature and low re-crystallization temperature. In this process combining mechanical work and deformation heating to get high defect free welding joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of applications such as an automobile, shipbuilding and aerospace due to their high corrosion resistance, lightweight and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The mechanical and Corrosion behaviour of the welded joints were investigated at different welding parameters.
Technical Paper

Emission and tribological studies on nano CuO/Jatropha methyl ester/Synthetic mineral oil in a two-stroke engine.

2019-10-11
2019-28-0095
In lieu of the increase in the population of automobiles, there is heavy use of fossil fuels and mineral oils. This leads to depletion in fossil fuel and mineral oil which is a by-product of petroleum. We cannot depend on this for a long period of time and which is toxic to the environment. In order to reduce the usage of existing mineral oil for lubrication, a source of non-edible oil from Jatropha Curcus which is available in an abundant and renewable source of alternative lubricant is processed as jatropha methyl ester because of high viscosity and density and blended with base oil which reduces the pollution. To increase the antiwear properties of the lubricating oil nano copper oxide particle additive are blend with the base oil which is tested in a two-stroke engine. Emission and tribological effects have been tested. There are chances of them being depleted in a short span of years.
Technical Paper

Surface modification of Aluminium alloy 5083 reinforced with Cr2O3/TiO2 by friction stir process

2019-10-11
2019-28-0179
Surface properties have vital role in overall performance of parts like brake shoe pad. The mechanical and residual stress measurements of aluminium alloy 5083 were investigated on friction stir processed plates using reinforcements of chromium oxide (Cr2O3) and Titanium di oxide (TiO2) separately as well as combination of these powders. A comparative analysis was performed to study the effects of reinforcements and tool type (cylindrical and threaded) keeping the FSP parameters and volume fraction of reinforcements as constant. This investigation shows that there was a significant increase in surface hardness (118 HRC) as well as decrease in residual stress compare to the base metal. This study also reveals that the threaded tool with a reinforcement of Cr2O3 and TiO2 reflected better mechanical properties than the cylindrical tool. The SEM image shows that the even distributions of reinforcement particles are presence in the processed zone.
Technical Paper

A comparative tribological performance of lubricating oils with zinc dialkyl dithiophosphate and zinc oxide nanoparticles as additives

2019-10-11
2019-28-0174
The present work compares the tribological properties of ZnO nanoparticle based lubricant with ZDDP (zinc dialkyl dithiophosphate) based lubricant. The nanolubricant was prepared by mixing the nanoparticles in base oil followed by ultrasonification and ZDDP based lubricant was prepared by mixing ZDDP and stirring with base oil. Base oil used was mineral base oil. Both the lubricants were tested at three different temperatures, loads and roughness values. The test was carried out on AISI 52100 steel samples prepared by wire cutting and were grinded to three different levels of surface roughness. Friction and wear tests were performed using a reciprocating sliding tribo-tester at three different loads and temperatures. Taguchi orthogonal array was used to reduce the number of experiments. SEM, EDS and AFM analysis were carried out to study the surface wear phenomenon.
Technical Paper

Design of Light Weight Footstep Using Continuous Glass Fiber Reinforced Plastic Brackets

2019-10-11
2019-28-0172
Objective Utility or Off-road vehicles are characterized with their higher ground clearances. Higher ground clearance of vehicle requires the vehicle to have footsteps for easy entry and exit of passengers from the vehicle. A typical foot step construction consists of structural steel brackets with an Aluminium or plastic top panel. Conventional steel construction is heavier to meet weight bearing capacity and durability requirements. Our objective of this work is to explore lightweight materials which can meet these performance requirements with a lighter construction. We chose to study the continuous glass fiber reinforced plastic as an alternative to the metal construction. Methodology The continuous glass fibers in the PP matrix improves the material strength due to high strength to weight ratio. The strength of the matrix increases depending on the fiber length in the matrix.
Technical Paper

Investigation of Dry sliding Wear behavior of AA8011 reinforced with Zirconium Oxide and Aluminium Oxide Hybrid Composites processed through Multi direction forging

2019-10-11
2019-28-0057
The present work focused on fabricating hybrid composites of AA8011 with reinforcement particles of Zr2O3 and Al2O3 was taken equal (5wt%) weight percentage respectively. The hybrid composites were casted in square shape (50x50x50 mm size) under the optimal stir casted process parametric condition, further it was taken for forging process. The prepared three samples were induced for uni-direction (x), bi- direction (x and y) and multi direction (x,y and z) forging route and the response of micro hardness of 68,81 and 96 VHN were obtained due to microstructural phase changes with uniform distribution of particles in the matrix. Further the forged hybrid composites were investigated for tribological tests under dry sliding condition in a Pin-on-Disc tribometer apparatus by varying the load of 5,10,15,20 N and by adjusting the sliding speed as 200, 450 and 800 rpm respectively.
Technical Paper

Experimental Investigation of Silicon Carbide Nanoparticles Reinforced Magnesium Alloy (AZ91E) Metal Matrix Composite by Vacuum Stir Casting Method

2019-10-11
2019-28-0169
In the present investigation silicon carbide nanoparticle reinforced magnesium alloy (AZ91E) composites were prepared by vacuum stir casting process in an inert atmosphere. Required amount of silicon carbide nanoparticle was added to AZ91E molten melt with constant stir speed of 600 rpm and vacuum pressure of 1 lpm so that the final composite contains 5, 7.5 and 10 wt.% SiC nanoparticle. The prepared composite was subjected to mechanical and microstructure studies. The addition of silicon nanoparticle enhances the mechanical properties compared to conventional magnesium alloy. Microstructure studies reveal uniform distribution of silicon carbide in magnesium alloy matrix.
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the DMLS is suggested for engine application which is a lightweight aluminum alloy. The mechanical properties like tensile strength, compressive strength, and hardness of both cast and additive manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. The reciprocating wear test is carried out with lubrication (SAE 40 oil) for one lakh cycles at 125°C temperature and Co-efficient of friction (COF), wear rate of the cast and additive manufactured samples were compared. Wear patterns are analyzed using SEM images of the wear tracks.
Technical Paper

Effect of Cryogenic Treatment on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0140
The main purpose of this study is to investigate additive manufactured Inconel super alloy subjected to Cryogenic Treatment (CT). Cryogenic treatment mainly used in aerospace, defence and automobile application. Direct Metal Laser Sintering is an Additive manufacturing technique used for manufacturing of Complex and complicated functional components. Inconel is an austenitic chromium nickel based super alloy often used in the applications which require high strength & temperature resistant. In this work, we have made an attempt to study microstructure and mechanical properties of additive manufactured Inconel 718 when subjected to cryogenic treatment at three different time intervals. The micro-structural evolution of IN718 super-alloy before and after CT was investigated by both Optic Microscope (OM) and SEM. Surface roughness and hardness at different CT time intervals has also analyzed. Additionally, XRD technique was used to analyze the surface residual stress.
Technical Paper

Study on Effect of Laser Peening on Inconel 718 produced by DMLS technique

2019-10-11
2019-28-0146
In Additive manufacturing, Direct Metal Laser Sintering is a rapid manufacturing technique used for manufacturing of functional components. Finely pulverized metal is melted using a high-energy fibre laser, by Island principle strategy produces mechanically and thermally stable metallic components with reduced thermal gradients, stresses & at high precision. Inconel is an austenitic chromium nickel based super alloy often used in the applications which require high strength & temperature resistant. It can retain its properties at high temperature, e.g. Engine components in aerospace, exhaust system in automobile applications etc. Here we attempts to analyze the effect of laser shock peening on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. Surface roughness of the material has been increased due to effect of laser shock pulse & ablative nature. 13 % Increase in macro hardness on the surface.
Technical Paper

Investigation on microstructure and mechanical properties of corrosion resistance alloy C-2000 fabricated by conventional arc welding technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Training / Education

Introduction to Advanced High Strength Steel Applications and Manufacturing

2019-10-07
Advanced High Strength Steels (AHSS) are now commonly used in automotive body structural applications. The high strength of this grade classification is attractive to help reduce mass in the automotive body through reduction in thickness. Strength also supports improvements in safety requirements so that mass increases are minimized. In some specific grades of AHSS, energy absorption is possible in addition to the high strength. This course will review the definition and properties of AHSS and cover several common applications in automotive body structures.
X