Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A DIRECT INJECTION DIESEL ENGINE USING BLENDS OF ETHYL ESTER OF JATROPHA OIL AND ETHANOL

2019-11-21
2019-28-2378
The need of Diesel as fuel has greatly pressurized the now scarcely available natural resources and is likely to become a luxury for the future generations. This paper aims at finding an alternate for diesel that can hopefully reduce the pressure on its existing demand. This paper presents a comparative study on use of different blends of Jatropha Oil (J) and Ethanol (E) as fuel in a diesel engine to observe its performance and emission characteristics. The findings are later compared with corresponding values of neat Diesel as fuel. Since Jatropha oil is more viscous and has polyunsaturated characteristics in its natural form, its ethyl ester was produced by transesterification process and later blended with Ethanol in different proportions like 90% J 10%E, 80J-20E, 70J-30E and 60J-40E.
Technical Paper

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9% .
Technical Paper

Comparative Experimental Investigation of Thumba and Argemone oil Based Dual Fuel Blend in a Diesel Engine for its Performance and Emission Characteristics

2019-11-21
2019-28-2375
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus Colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics. The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like ATB10 (5% Argemone, 5% Thumba and 90% Diesel), ATB20, ATB30 and ATB40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings.
Technical Paper

Modeling for collective effect of Muffler geometric modifications and blended microalgae fuel use on exhaust performance of a four-stroke diesel engine: A Computational Fluid Dynamics Approach

2019-11-21
2019-28-2377
Engine performance significantly depends on the effective exhaust of the combustion gases from the muffler. With stricter BSVI norms more efficient measures has to be adopted to reduce the levels of exhaust emissions from the exhaust to the atmosphere. Muffler along with reducing the engine noise, is intended to control the back pressure as well. Back pressure change has significant effect on muffler temperature distribution which affects the NOx emission from the exhaust. Many research communications have been made to reduce the exhaust emissions like HC, CO and CO2 from the exhaust by using different generation biofuels as alternate fuel, yet they have confronted challenges in controlling the NOx content from exhaust. This work presents the combined effect of Muffler geometry modifications and blended microalgal fuel on exhaust performance with an aim to reduce NOx emission from the exhaust of a four-stroke engine.
Technical Paper

Effect of Gasoline-Ethanol blends on GDI engine to reduce cost of vehicle ownership

2019-11-21
2019-28-2379
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency.
Technical Paper

Development of low cost closed crankcase ventilation with oil mist separation system on light duty diesel engine.

2019-11-21
2019-28-2578
Currently automotive industry is facing bi-fold challenge of reduction in Greenhouse gases emissions as well as low operating cost. On one hand Emission regulations are getting more and more stringent on other hand there is major focus no customer value proposition. Engine blow by gases are one of the source of Greenhouse gases emission from engine. Blow by gases not only consist of unburn hydrocarbons but also carry large amount of oil. If oil is not separated from these gases, it will led to major oil consumption and hence increase total operating cost of Vehicle. In this paper, effort has been taken to develop a low cost closed crank case ventilation with oil mist separation system on diesel engine.
Technical Paper

Study of Handling Behavior of a Passenger Vehicle after addition of CNG Tank

2019-11-21
2019-28-2405
Objective The objective of this paper is to achieve a comparable handling performance from a vehicle fitted with a CNG tank to that of its gasoline counterpart. A validated CarSim model is run through standard handling evaluation tests before and after the addition of CNG tank. The simulation results are used to compare the handling characteristics of the CNG vehicle with the Base vehicle. Further these results are used to tune the suspension parameters to find an optimum set-up for the actual CNG vehicle. The final parameters are then evaluated in the actual vehicle to verify the study. Methodology A mix of Actual Mule vehicle testing backed by quik Car Sim Model. Full car model is first developed using CarSim by using the parameters of the actual base gasoline vehicle. The modeled vehicle is then tested for standard handling maneuvers such Double Lane Change, Constant Radius Constant Speed and Pulse Input.
Technical Paper

Development of Dedicated Lubricant for Hydrogen Fueled Spark Ignition Engine

2019-11-21
2019-28-2511
Hydrogen has low ignition energy ensures easy ignition of the ultra-lean mixture of H2+air also. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant volume which enhances the thermal efficiency of hydrogen fuelled IC engine. High octane number of hydrogen makes it suitable for its application in Spark ignition (SI) engines. Since the hydrogen combustion in spark ignition engine generates water which can interfere with the lubricant performance, different lubricant is to be developed for this purpose. In this background, the present work is aimed at the development of dedicated lubricant for hydrogen fuelled SI engine. This paper presents the various parameters required for evaluating different lubricants for hydrogen fuelled genset.
Training / Education

Fuel Systems Material Selection and Compatibility with Alternative Fuels

2019-11-19
This course will introduce the participants to the factors governing fuel-material compatibility and methods to predict and empirically determine compatibility for new alternative fuel chemistries.  By understanding the mechanisms and factors associated with chemically-induced degradation, participants will be able to assess the impact of fuel chemistry to infrastructure components, including those associated with vehicle fuel systems.  This course is unique in that it looks at compatibility from a fuel chemistry perspective, especially new fuel types such as alcohols and other biofuels. 
Training / Education

Introduction to Power Electronics in Automotive Applications

2019-11-04
Modern power electronics (PE) devices and circuits are now in widespread use in automotive and non-automotive applications. The purpose of this course is to give an overall introduction to the key aspects of power electronic circuits, components and design in automotive applications. Topics covered include power semiconductor devices, their characteristics and operation, and their use in power electronics circuits.
Technical Paper

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

2019-10-22
2019-01-2599
The design optimization and control of Free Piston Linear Engine (FPLE) has been found to be difficult as each independent variable changes the dynamics with respect to time. These dynamics, in turn, alters the alternator and engine response to other governing variables. As a result, the FPLE system necessitates an energy balance control algorithm with high-speed dynamic response for stable operation and perhaps optimized system efficiency. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the alternator. This energy balance control is similar to the use of a governor to control the crankshaft rotational speed in a conventional crankshaft driven engine. In addition to that, when stiff springs are added to the FPLE system, the dynamics becomes more sinusoidal and more consistent with increasing spring stiffness.
Technical Paper

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

2019-10-22
2019-01-2604
The research work intends to assess the need and improvement of using a low viscous bio oil, RH (Rice Husk) Nano Particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel was its higher viscosity. Hence, a low viscous oil (Pine oil) which doesn’t need transesterification process was used as a biofuel in this study. To further improve its characteristics a non-metallic Nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (Hydrocarbon), Smoke, CO (Carbon monoxide). On the contrary NOx (Oxides of Nitrogen) emission was found to be increased for all load values.
Technical Paper

Effect of Fuel Type and Tip Deposits on Gasoline Direct Injection Fuel Injector End of Injection Spray Characteristics

2019-10-22
2019-01-2600
There has been a great effort expended in identifying causes of Hydro-Carbon (HC) and Particulate Matter (PM) emissions resulting from poor spray preparation, leading to characterization of fueling behavior near nozzle. It has been observed that large droplet size is a primary contributor to HC and PM emission. Imaging technologies have been developed to understand the break-up and consistency of fuel spray. However, there appears to be a lack of studies of the spray characteristics at the End of Injection (EOI), near nozzle, in particular, the effect that tip deposits have on the EOI characteristics. Injector tip deposits are of interest due to their effect on not only fuel spray characteristics, but also their unintended effect on engine out emissions. Using a novel imaging technique to extract near nozzle fuel characteristics at EOI, the impact of tip deposits on Gasoline Direct Injection (GDI) fuel injectors at the EOI is being examined in this work.
Technical Paper

Impact of Waste Plastic Oil and Its Blends on Performance Combustion and Emission Characteristics of CRDI Engine

2019-10-11
2019-28-0047
Utilization of diesel is augmented consistently by transportation and industrial sectors which is making its existence obsolete in near future. Tremendous research has been done by many researchers to find an appropriate alternative for diesel fuel, in this scenario abundant acquisition of plastic wastes and their improper retreating techniques has grabbed the attention of researchers to convert them into alternative fuel for IC engines. This experimental investigation aims to study the performance, combustion and emission characteristics of common rail direct injection (CRDI) fuelled with waste plastic oil and diesel blends at different injection strategies and at various loading conditions. From the results it is noticed that slight decline in the thermal efficiency of the engine when operated with waste plastic oil (100%) due to high viscosity and lower heating value. There was a momentous diminishment in NOx emissions for low injection pressures of plastic diesel blend (P30).
Technical Paper

A Fuzzy Logic Based Energy Management of Grid Connected Hybrid Energy System

2019-10-11
2019-28-0076
On account of boundless presence and eco-friendly nature of Sustainable Energy Sources (SES) like Wind system, PV etc. power generation using SES became more captivating. This work concentrates on Energy Management (EM) of grid synchronized Hybrid Renewable Energy System (HRES) along with fuzzy logic control. Where the HRES system is a combination of solar panel and wind turbine as sources. Along with an electrical battery for energy storage via an interface using a DC-DC fused CUK-SEPIC converter with multiple input is adopted. This convertor is employed to incorporate the HRES to the main grid. In addition to grid integration a Fuzzy Logic Based (FLB) controller is employed to increase the efficiency of the system. The converter topology used is a crossbreed of wind and solar power system, which is used to eliminate the inclusion of MPPT. A two level framework is imposed, which includes a logic controller to ensure efficient EM when HRESs are interconnected with the grid.
Technical Paper

Amelioration of Modular Mobility by Adopting Split Cell Solar Panel Cleaning and Cooling Thereof

2019-10-11
2019-28-0078
In the photovoltaic system, the efficiency of solar cells is determined by the combination of latitude and climate. The electricity generation in the photovoltaic cell is more in the morning time than in the afternoon time. This is due to the fact that an increase in solar cell temperature leads to a decrease in efficiency of the solar panel. This work aims to provide necessary cooling to the solar panel for favorable output during noon time. Normally electrical modular vehicles use non-split cell solar panels. In order to increase the efficiency, we are using a split cell solar panel as it increases the voltage by halving the size of the silicon chips. Thus, having the cells results in increasing efficiency and lowering the operation temperature. The solar panel should be maintained at a particular temperature by adopting sprinkling of water method in solar panel for hybrid vehicles.
Technical Paper

Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil

2019-10-11
2019-28-0081
In this experimental study, combustion, performance & emission characteristics of a single cylinder D.I. diesel engine is analyzed using lemon grass oil and diesel blend B20. The alumina (Al2O3) nano-particles of 10, 20 and 30 parts per million (B20A10, B20A20, B20A30) are assorted with prepared fuel blend through an ultrasonicator which would help to fetch an unvarying suspension of nano-particles over the blend fuel. SEM analysis and X-ray diffraction have been done for the alumina nano-particles to test the size of the particles that are blended to the bio-fuel blends. The chemical reactivity and rate of mixing are better though the characteristics of nano-particles exhibit high exterior area/capacity ratio during combustion that ultimately results in good characteristics of a diesel engine. Among test fuels, B20A20 shows healthier performance both in relationships of efficiency & emissions such as Nitrous oxide (NOx), hydrocarbon (HC), Carbon monoxide (CO), and Smoke.
Technical Paper

Design and Analysis of Sigma Z-Source Inverter for PV Applications

2019-10-11
2019-28-0123
Traditional Voltage Source Inverter (VSI) produces lesser output voltage than the input and causes shoot-through due to the gating of the semiconductor device connected in same leg. The ZSI is used to overcome the inadequacies of VSI. The ZSI has been extensively used in electric drives, PV system and UPS. The conventional ZSI suffers some disadvantages like restricted boost capability, discontinuity in input current and large inrush current. These limitations are overcome by using a transformer which replaces the inductor in the impedance source network. In high-voltage gain applications, the single transformer-based ZSI topologies requires more turns ratio which requires large size transformer. For improving the boost capability, the TZSI is used. The Z-source network of the TZSI constitutes two transformers with low turns ratio. TZSI has certain demerits such as restricted boost capability, high inrush current and discontinuity in the input current.
Technical Paper

Influence of Addition of Ethanol into Non-Edible Biodiesel from Rice Bran Oil on the Properties and Performance - An Experimental Study in Direct Injection VCR Diesel Engine

2019-10-11
2019-28-0160
Non-edible oil biodiesels and alcohols are the two major liquid fuel sources available to replace diesel to fuel compression ignition engine. This study is to investigate the solubility, properties and performance of biodiesel from non-edible rice bran oil and ethanol. Solubility test was conducted in three different temperatures 50C, 150C& room temperature (300C approximately). The stable blends were tested for essential properties such as energy content, cetane number, kinematic viscosity, heat of vaporisation, flash point and oxygen content as per ASTM standards. Biodiesel- ethanol blends containing 30% of ethanol was found stable up to 50C. This blend also met the minimum requirement with respect to properties to fuel compression ignition engine. These blends were tested in compression ignition engine for performance, combustion and emission characteristics in various load conditions under two compression ratios (17,1 & 18,1).
Technical Paper

Experimental Study on Combined Effect of Yttria Stabilized Zirconia Coated Combustion Chamber Components and Emulsification Approach on the Behaviour of a Compression Ignition Engine Fuelled with Waste Cooking Oil Methyl Esters

2019-10-11
2019-28-0164
Waste Cooking Oil (WCO) is generated in large quantity worldwide due to the increase in population and change of food habits. This work is about utilizing this WCO as an alternative fuel for Compression Ignition (CI) engine, in view of addressing the constraints in the domain of land as well as air pollution. A fuel and engine level modification were carried out to analyse the behaviour of the test engine. In the first phase of the study, collected WCO was converted into its methyl esters (i.e. WCOME) and tested for its properties. A single cylinder, water cooled, direct injection, compression ignition engine was developed with suitable emission and combustion parameters computing equipments in the second phase of the work. In the third phase of the work, the developed engine was tested with neat diesel, WCO and WCOME under different engine power outputs. WCOME was converted into its emulsion (WCOMEE) and tested in the developed engine in the fourth phase of the work.
X