Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS13004 Process Failure Mode and Effects Analysis (PFMEA) and Control Plans

2021-05-18
In the Aerospace Industry there is a growing focus on Defect Prevention to ensure that quality goals are met. Process Failure Mode & Effects Analysis (PFMEA) and Control Plan activities described in AS13004 are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Process Flow Diagrams, Process Failure Mode & Effects Analysis (PFMEA) and Control Plans as described in AS13004. It will show the links to other quality tools such as Design FMEA, Characteristics Matrix and Measurement Systems Analysis (MSA).
Training / Education

Fundamentals of Threaded Fasteners

Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Whether this shocking figure is accurate or not, it is irrefutable that threaded fasteners are poorly misunderstood by many in both the fastener and user communities. In October 1990 the USS Iwo Jima suffered a catastrophic steam valve accident minutes after leaving port following repairs to its steam plant. In one of the single most deadly events of Operation Desert Storm, ten of the eleven crewmen present in the engine compartment would lose their lives.
Training / Education

PFMEA and the Control Plan - Overview and Application

The Process FMEA and Control Plan program introduces the basic concepts behind this important tool and provides training in how to conduct an effective PFMEA. First, the course explains what a PFMEA is and how it improves the long-term performance of your products, services and related processes by addressing process related failures. The role of the PFMEA in the overall framework of Quality Management System Requirements is explained as well as the role of the PFMEA in the Advanced Product Quality Planning (APQP) process. Additionally, the differences and relationships between the DFMEA and PFMEA are well defined.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Technical Paper

Development of an Epoxy Carbon Fiber Reinforced Roof Frame Using the High Pressure Resin Transfer Molding (HP-RTM) Process

2020-04-14
2020-01-0773
Composites technology for the automotive market continues to advance rapidly. Increasing knowledge of composite design, simulation tools, new materials and process equipment are all contributing to make composites better performing and more affordable for mass-produced vehicles. In particular, the high pressure resin transfer molding (HP-RTM) and related liquid compression molding (LCM) processes are enabling manufacturers to produce complex composite parts at shorter and shorter cycle times. This paper describes the development of an epoxy carbon fiber roof frame targeted for future vehicle production. Several composite processes were considered for the roof frame. The case illustrates that when the (product) design, material and process are considered together, a high-performing, cost-efficient part can be produced.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Design of Valve Body Integrated Direct Acting Controids

2020-04-14
2020-01-0965
The latest trend in transmission hydraulic controls development ise body integrated direct acting control solenoid, ted by multiple automotive OEMs. The advantages of integrated direct acting control solenoids are key enablers for OEMs to meet more and more stringent fuel economy requirement and competitive environment. In the meantime, there are unique challenges in both designing and manufacturing of such solenoids, due to the fact the solenoid armature can only push the spool valve with limited force and limited stroke. Through analytical methods, this paper explains design guidelines to overcome the challenges and quantifies the impact of design decision to critical functional objectives. Multiple valve design configurations, including both normally low and normally high functionality, are covered in the analysis. Unique manufacturing process concerns are also addressed.
Technical Paper

Coupled Weld-Rupture Analysis of Automotive Assemblies: A Study to Demonstrate the Impact of Welding Processes on the Performance of Weldments

2020-04-14
2020-01-1076
Welding processes are complex in nature. They affect the mechanical properties of a weldment in and around the welding joint (in the heat affected zone: HAZ), causing deformation and inducing high level of residual stress and plastic strain which are detrimental to the weldment performance. After welding some materials soften while others harden in the heat affected zone, depending on the process heat input, the thickness of the material and its chemical composition. Traditionally, finite element (FE) performance analyses (crash, rupture, fatigue, static and dynamic tests) of weldments are performed without accounting for the effects of welding processes and as such the real performance of a weldment is not accurately predicted. On one hand, if base material properties are used to represent a weldment which hardens in the heat affected zone, the performance analysis results would be too conservative which would hinder/limit potential weight reduction strategies.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Technical Paper

Edge-Quality Effects on Mechanical Properties of Stamped Non-Oriented Electrical Steel

2020-04-14
2020-01-1072
The market for electric vehicles and hybrid electric vehicles is expected to grow in the coming years, which is increasing interest in design optimization of electric motors for automotive applications. Under demanding duty cycles, the moving part within a motor, the rotor, may experience varying stresses induced by centrifugal force, a necessary condition for fatigue. Rotors contain hundreds of electrical steel laminations produced by stamping, which creates a characteristic edge structure comprising rollover, shear and tear zones, plus a burr. Fatigue properties are commonly reported with specimens having polished edges. Since surface condition is known to affect fatigue strength, an experiment was conducted to evaluate the effect of sample preparation on tensile and fatigue behavior of stamped specimens. Tensile properties were unaffected by polishing. In contrast, polishing was shown to increase fatigue strength by approximately 10-20% in the range of 105-107 cycles to failure.
Book

The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Assembly

2019-05-28
The Future of Airplane Factory: Digitally Optimized Intelligent Airplane Factory defines the architecture, key building blocks, and roadmap for actualizing a future airplane factory (FAF) that is digitally optimized for intelligent airplane assembly. They fit and integrate with other FAF building blocks that aggregate to a Digitally Optimized Intelligent Airplane Factory (DOIAF). The word "intelligent" refers to the ability of a system to make right decisions and take right action in the highly dynamic and fluid environment of the modern airplane manufacturing space. The event-driven dynamics inherent in the complexity of this environment drive the need for expert knowledge which resides in intelligence systems incorporating the experience of experts. Expert knowledge need not be smart, brilliant, or possess genius as long as the outcomes are derived from right decisions resulting in right actions-applied rapidly to sustain an optimized factory enterprise.
Book

Introduction to Advanced Manufacturing

2019-07-24
Introduction to Advanced Manufacturing was written by two experienced and passionate engineers whose mission is to make the subject of advanced manufacturing easy to understand and a practical solution to everyday problems. Harik, Ph.D. and Wuest, Ph.D., professors who have taught the subject for decades, combined their expertise to develop both an applied manual and a theoretical reference that addresses many different needs. Introduction to Advanced Manufacturing covers the following topics in detail: • Composites Manufacturing • Smart Manufacturing • Additive Manufacturing • Computer Aided Manufacturing • Polymers Manufacturing • Assembly Processes • Manufacturing Quality Control and Productivity • Subtractive Manufacturing • Deformative Manufacturing Introduction to Advanced Manufacturing offers a new, refreshing way of studying how things are made in the digital age.
Technical Paper

What If the Speed Had Been Less? Causation in Time Limited and Distance Limited Hazards

2020-04-14
2020-01-0881
With a path intrusion incident, it is almost always the case that the collision would have been avoided if the pedestrian had not run out, or if the vehicle on the minor road had stopped, or so on. However should the other party be thought to have been travelling at an excessive speed, often the reconstructionist is asked to make a calculation of what whether the collision would, at some alternative speed say equal to the speed limit, still have occurred. In that way causation is addressed. The paper distinguishes between those hazards which are distance limited and those which are time limited, giving definitions of the two types. Distance limited hazards are deterministic, but time limited hazards have a probabilistic basis. This difference has important implications for causation. For a hazard at a fixed distance, there is a well known formula for calculating whether the collision would have been avoided at a slower alternative speed.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Super High Transfer Efficiency Application for Body Coating

2020-04-14
2020-01-0901
In order to achieve the Toyota Environmental Challenge of 2050 (zero CO2 emissions), we have developed an innovative coating system that achieves more than 95% transfer efficiency. In order to reduce paint loss in the painting process, it is necessary to eliminate overdust and bounce dust. The most important point is how to spray (atomization, particle flight, adhesion) without shaping air. We have developed a “super high transfer efficiency system” that eliminates the need for shaping air. We continue to challenge the development of innovative technologies to view the paint shop as clean and eco-friendly environment.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Technical Paper

Evaluation of High Resistance Connection in Automotive Application

2020-04-14
2020-01-0926
Electrical connections have a normal operational temperature range. A high resistance, such as a poor connection, in an electrical circuit has been reported to cause a temperature increase exceeding normal operational range at the connection. This study measures the temperature increase in a typical automotive bolted battery cable connection with low to zero torque values and simulated high resistance under different load conditions. The torque is changed from maximum design value to 0 Nm and the temperature increase at the connection is measured. The high resistance connections, manually created by adjusting the contacts, are tested for several power loss values at the connection. The temperature rise under these conditions at the connection is measured and subsequently recorded. The maximum temperature increase at the bolted cable connection recorded at low torque values including 0 Nm torque compared to the maximum typical design value of 17 Nm is 10.5 °C.
Technical Paper

A Direct Engineering Approach to Draw Die Binder Development Design

2020-04-14
2020-01-0952
A method of designing the binder developments of draw dies for sheet metal stampings that integrates the mathematics of formability, kinematics and friction into the design (i.e. synthesis) process is described. The method is in four phases: (1) Forming feasibility of the product design, (2) 3D wireframe design of the addendum, (3) Surfacing of the addendum, and (4) Productionizing the design. The objectives (e.g., splits, wrinkles, spring-back, etc) are converted to strains and displacements that must be imposed at strategic locations and then a 3D wireframe of true arcs is constructed to approximate the product geometry. The forming feasibility is then calculated for each arc of the wireframe outward in sequence from the defined strategic conditions quantifying the force-displacement energy continuum that must be imposed at the edge-of-part.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Journal Article

Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications

2020-04-14
2020-01-1051
A novel Spatially Optimized Diffusion Alloy (SODA) material has been developed and applied to exhaust systems, which are an aggressive environment subject to high temperatures and loads, as well as excessive corrosion. Traditional stainless steels disperse chromium homogeneously throughout the material, with varying amounts ranging from 10% to 20% dependent upon its grade (e.g. 409, 436, 439, 441, and 304). SODA steels, however, offer layered concentrations of chromium, enabling an increased amount along the outer surface for much needed corrosion resistance and aesthetics. This outer layer, typically about 70μm thick, exceeds 20% of chromium concentration locally, but is less than 3% in bulk, offering selective placement of the chromium to minimize its overall usage. Since this layer is metallurgically bonded, it cannot delaminate or separate from its core, enabling durable protection throughout manufacturing processes and full useful life.
X