Refine Your Search

Topic

Author

Affiliation

Search Results

White Paper

REDUCING DOWNTIME THROUGH THE USE OF PREDICTIVE ANALYTICS AND TECHNICAL TRAINING ADVANCEMENTS

2018-01-05
WP-0007
The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.
Collection

Multi-Dimensional Engine Modeling, 2018

2018-04-03
This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.
Standard

Air Dryer Test Procedure

2017-05-02
WIP
J2384
This SAE Recommended Practice establishes uniform Test Procedures for desiccant Air Dryers used in vehicles with compressed air systems per SAE J2383. Continuous flow desiccant Air Dryers are excluded from the scope of this document.
Collection

Vehicle Dynamics, Stability and Control, 2017

2017-03-28
This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
Standard

Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles

2018-10-28
WIP
J2053
This SAE Recommended Practice specifies the performance test procedures and requirements of a plastic reservoir assembly suitable for use on a hydraulic brake master cylinder (reference SAE J1153). Intended usage is for on-road vehicles using brake fluid conforming to fMVSS-116 (DOT 3), and SAE J1703 specifications. This document includes the cap.cover and diaphragm as integral parts of the reservoir assembly. The fluid level sensor (FLS) is also included as an integral part of the assembly. However, additional FLS standards and/or requirements are applicable and necessary which are not covered in this document. This document is intended to provide a recommended practice and minimum performance requirements of current established designs on those reservoir assemblies generally used by individual manufacturers which have demonstrated satisfactory field performance. This document is applicable to new reservoir assemblies for commercial or aftermarket production.
Standard

Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles

1994-06-01
HISTORICAL
J2053_199406
This SAE Recommended Practice specifies the performance test procedures and requirements of a plastic reservoir assembly suitable for use on a hydraulic brake master cylinder (reference SAE J1153). Intended usage is for on-road vehicles using brake fluid conforming to fMVSS-116 (DOT 3), and SAE J1703 specifications. This document includes the cap.cover and diaphragm as integral parts of the reservoir assembly. The fluid level sensor (FLS) is also included as an integral part of the assembly. However, additional FLS standards and/or requirements are applicable and necessary which are not covered in this document. This document is intended to provide a recommended practice and minimum performance requirements of current established designs on those reservoir assemblies generally used by individual manufacturers which have demonstrated satisfactory field performance. This document is applicable to new reservoir assemblies for commercial or aftermarket production.
Standard

Brake Master Cylinder Plastic Reservoir Assembly for Road Vehicles

2006-08-16
CURRENT
J2053_200608
This SAE Standard specifies the performance test procedures and requirements of a plastic reservoir assembly suitable for use on a Hydraulic Brake Master Cylinder (reference SAE J1153). Intended usage is for on-road vehicles using brake fluid conforming to FMVSS 116 (DOT 3), SAE J1703, and SAE J1704 specifications. This document includes the cap/cover and diaphragm as integral parts of the reservoir assembly. The fluid level sensor (FLS) is also included as an integral part of the assembly. However, additional FLS standards and/or requirements are applicable and necessary which are not covered in this document.
X