Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Integrated Solutions for Noise and Vibration Control in Vehicles

2014-06-30
2014-01-2048
The automotive industry is aiming at both reducing the weight of the vehicles while improving a high level of comfort. This causes contradicting requirements for the systems used for noise and vibration control. Thus, active systems are investigated which may enhance the performance of passive noise and vibration control in vehicles without adding excessive weight. In this paper, basic principles for the implementations of those systems with a focus on the control systems are reviewed. Examples from implementations in automotive applications are presented, including control of engine vibrations, structure borne noise transmitted from the road into the passenger compartment and low-frequency chassis vibrations. Based on adaptive filter systems already widely used in active noise control adaptation of the control algorithms to the specific application scenarios are discussed.
Journal Article

Radio Frequency Diesel Particulate Filter Soot and Ash Level Sensors: Enabling Adaptive Controls for Heavy-Duty Diesel Applications

2014-09-30
2014-01-2349
Diesel Particulate Filters (DPF) are a key component in many on- and off-road aftertreatment systems to meet increasingly stringent particle emissions limits. Efficient thermal management and regeneration control is critical for reliable and cost-effective operation of the combined engine and aftertreatment system. Conventional DPF control systems predominantly rely on a combination of filter pressure drop measurements and predictive models to indirectly estimate the soot loading state of the filter. Over time, the build-up of incombustible ash, primarily derived from metal-containing lubricant additives, accumulates in the filter to levels far exceeding the DPF's soot storage limit. The combined effects of soot and ash build-up dynamically impact the filter's pressure drop response, service life, and fuel consumption, and must be accurately accounted for in order to optimize engine and aftertreatment system performance.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Journal Article

Functional Safety Compliant ECU Design for Electro-Mechanical Brake (EMB) System

2013-09-30
2013-01-2062
In this paper, we propose a hardware and a software design method considering functional safety for an electro-mechanical brake (EMB) control system which is used as a brake actuator in a brake-by-wire (BBW) system. A BBW system is usually composed of electro-mechanical calipers, a pedal simulator, and a control system. This simple by-wire structure eliminates the majority of bulky hydraulic brake devices such as boosters and master cylinders. The other benefit of a BBW system is its direct and independent response; this leads to enhanced controllability, thus resulting in not only improved basic braking performance but also considerably easier cooperative regenerative braking in hybrid, fuel-cell, and electric cars. The importance of a functional safety based approach to EMB electronic control unit (ECU) design has been emphasized because of its safety critical functions, which are executed with the aid of many electric actuators, sensors, and application software.
Journal Article

Formal Methods for the Analysis of Critical Control Systems Models: Combining Non-Linear and Linear Analyses

2013-09-17
2013-01-2109
Critical control systems are often built as a combination of a control core with safety mechanisms allowing to recover from failures. For example a PID controller used with triplicated inputs. Typically those systems would be designed at the model level in a synchronous language like Lustre or Simulink, and their code automatically generated from those models. In previous SAE symposium, we addressed the formal analysis of such systems - focusing on the safety parts - using a combination of formal techniques, ie. k-induction and abstract interpretation. The approach developed here extends the analysis of the system to the control core. We present a new analysis framework combining the analysis of open-loop stable controller with those safety constructs. We introduce the basic analysis approaches: abstract interpretation synthesizing quadratic invariants and backward analysis based on quantifier elimination.
Journal Article

Continuous-Positional Automatic Ballonet Control System for Airship

2013-09-17
2013-01-2236
This paper is devoted to a method of creating of the automated ballonet system for pressure control inside an airship envelope. Along with the study of the effects of the positional control system parameters, the authors develop novel control scheme. It is based on a new hybrid controller, which combines positional approach to forming the output control signal with a contour of continuous correction of input signal, which defines the pressure drop on the surface of the envelope as a function of the flight altitude. This approach allows reducing the effect of self-oscillations of airship envelope internal pressure on the flight altitude. In order to prove the new approach the mathematical model is being obtained. The results of the derivation and simulations of the control system operation are presented in this paper.
Journal Article

Multi-Axis Serially Redundant, Single Channel, Multi-Path FBW Flight Control System

2013-09-17
2013-01-2257
A multi-axis serially redundant, single channel, multi-path FBW (FBW) control system comprising: serially redundant flight control computers in a single channel where only one “primary” flight control computer is active and controlling at any given time; a matrix of parallel flight control surface controllers including stabilizer motor control units (SMCU) and actuator electronics control modules (AECM) define multiple control paths within the single channel, each implemented with dissimilar hardware and which each control the movement of a distributed set of flight control surfaces on the aircraft in response to flight control surface commands from the primary flight control computer, and a set of (pilot and co-pilot) controls and aircraft surface/reference/navigation sensors and systems which provide input to a primary flight control computer and are used to generate the flight control surface commands in accordance with the control law algorithms implemented in the flight control computers.
Journal Article

In-Situ Emissions Performance of EPA2010-Compliant On-Highway Heavy-Duty Diesel Engines

2013-09-24
2013-01-2430
Implementation of EPA's heavy-duty engine NOx standard of 0.20 g/bhp-hr has resulted in the introduction of a new generation of emission control systems for on-highway heavy-duty diesel engines. These new control systems are predominantly based around aftertreatment systems utilizing urea-based selective catalytic reduction (SCR) techniques, with only one manufacturer relying solely on in-cylinder NOx emission reduction techniques. As with any new technology, EPA is interested in evaluating whether these systems are delivering the expected emissions reductions under real-world conditions and where areas for improvement may lie. To accomplish these goals, an in-situ gaseous emissions measurement study was conducted using portable emissions measurement devices. The first stage of this study, and subject of this paper, focused on engines typically used in line-haul trucking applications (12-15L displacement).
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Journal Article

Control System for a PEM Fuel Cell Powered Heavy Duty Tactical Mobility Truck with Auxiliary Power Generation Capabilities

2013-09-24
2013-01-2472
The incorporation of hydrogen fuel cells into heavy duty tactical mobility vehicles can bring about great opportunities in reducing the pollutant emissions of this kind of platforms (GVW > 30,000 kg). Furthermore the transportation of fuel to operational areas has become a key aspect for any deployment therefore optimal use of this resource is of paramount importance. Finally, it is also quite common for such platforms to serve additional purposes, besides freight delivery, such as powering external equipment (i.e. field hospitals or mobile artillery pieces). This work will describe the intelligent energy management system for a PEM Fuel Cell-Battery-Ultracapacitor Hybrid 8×8 heavy truck of the aforementioned weight class which also contemplates an internal electric/traction power generation unit. It will describe how the system optimizes the use of battery and hydrogen fuel energy while keeping system efficiency and performance at a maximum.
Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

2013-10-14
2013-01-2544
A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
Journal Article

Development of Feedback-Based Active Road Noise Control Technology for Noise in Multiple Narrow-Frequency Bands and Integration with Booming Noise Active Noise Control System

2015-04-14
2015-01-0660
When a vehicle is in motion, noise is generated in the cabin that is composed of noise in multiple narrow-frequency bands and caused by input from the road surface. This type of noise is termed low-frequency-band road noise, and its reduction is sought in order to increase occupant comfort. The research discussed in this paper used feedback control technology as the basis for the development of an active noise control technology able to simultaneously reduce noise in multiple narrow-frequency bands. Methods of connecting multiple single-frequency adaptive notch filters, a type of adaptive filter, were investigated. Based on the results, a method of connecting multiple filters that would mitigate mutual interference caused by different controller transmission characteristics was proposed.
Journal Article

New Slip Control System Considering Actuator Dynamics

2015-04-14
2015-01-0656
A new control strategy for wheel slip control, considering the complete dynamics of the electro-hydraulic brake (EHB) system, is developed and experimentally validated in Cranfield University's HiL system. The control system is based on closed loop shaping Youla-parameterization method. The plant model is linearized about the nominal operating point, a Youla parameter is defined for all stabilizing feedback controller and control performance is achieved by employing closed loop shaping technique. The stability and performance of the controller are investigated in frequency and time domain, and verified by experiments using real EHB smart actuator fitted into the HiL system with driver in the loop.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Technical Paper

Research on Locked Wheel Protection Function of Aircraft Brake System

2021-10-11
2021-01-1269
Locked wheel protection is an important part of antiskid control for aircraft brake control system. Locked wheel protection compares the wheel speed of two or more wheels, if one of the wheels is too slow, locked wheel protection releases the brake pressure on the slow wheel. This work aims to study the control logic for locked wheel protection. Locked wheel protection control logic consists of 3 key factors: paired wheels, active threshold and inhibit velocity. Focus on comparison different options of these 3 factors, all aspects of control logic for locked wheel protection had been expounded in this study. Simulation and calculation analysis is applied for different locked wheel strategies to evaluate the effect. One conclusion is that the greatest wheel speed of the wheel under control shall be set as a reference speed for locked wheel protection. This study provide the basis to design a proper locked wheel protection function of aircraft brake control system.
Technical Paper

Research on Braking Energy Recovery Strategy of Pure Electric Vehicle

2021-10-11
2021-01-1264
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed.
Technical Paper

Transfer Film Composition and Characteristics in Copper-Free NAO Brake Pads

2021-10-11
2021-01-1278
Copper-free non-asbestos-organic (NAO) brake pads have been developed to satisfy the copper content regulations in North America. Copper-free NAO brake pads are required to have a stable friction coefficient owing to the electrification of the control systems, as well as to exhibit improved wear resistance to reduce brake dust emissions. Our previous study indicated that the transfer film formed on the rotor surface affects both the friction coefficient stability and amount of wear. In this study, we investigated how different types of inorganic fillers affect the transfer film formation and its composition in a wear test controlled by temperature. It was confirmed that the main component of the transfer film was iron oxide derived from the rotor. Furthermore, the contained components changed according to the appearance of the rotor surface after each wear test.
Technical Paper

Identifying Critical Use Cases for a Plug-in Hybrid Electric Vehicle Battery Pack from Thermal and Ageing Perspectives

2021-09-21
2021-01-1251
The current trend towards an increasing electrification of road vehicles brings to life a whole series of unprecedent design issues. Among these, the ageing process that affects the lifetime of lithium-ion based energy storage systems is of particular importance since it turns out to be extremely sensitive to the variation of battery operating conditions normally occurring especially in hybrid electric vehicles (HEVs). This paper aims at analyzing the impact of operating conditions on the predicted lifetime of a parallel-through-the-road plug-in HEV battery both from thermal and ageing perspectives. The retained HEV powertrain architecture is presented first and modeled, and the related energy management system is implemented. Dedicated numerical models are also discussed for the high-voltage battery pack that allow predicting its thermal behavior and cyclic ageing.
X