Refine Your Search

Topic

Author

Affiliation

Search Results

Magazine

Automotive Engineering: August 4, 2016

2016-08-04
Special report: Lightweighting Uncovering the next actions in the industry's grand mass-reduction campaign. CAE's next leap forward With 3D simulations skyrocketing, engineers are looking forward to highly-optimized toolsets to keep pace with complexity. SAE Convergence 2016 Preview Meet the disruptors, network with peers and learn about the latest tech solutions that are rapidly changing the auto industry. "Military-grade" aluminum Jaguar, Exa say simulation to eliminate prototypes by 2020 OEMs expand testing of FEV variable-compression ratio engine Growth of FCVs and EVs tied to infrastructure Bolt EV seat design cuts weight, delights tall passengers Rolls-Royce reveals a Vision of its future Volvo bets on new PowerPulse, not 48V, to attack turbodiesel 'lag' SEAT to spearhead VW's new platform and 48V technology Dr. Jay Baron of CAR discusses vehicle lightweighting and predicts the outcome of the crucial CAFE mid-term review.
Magazine

MOBILITY ENGINEERING: March 2016

2016-03-01
Autonomous vehicles: impact on society Self-driving technology offers plenty of promise, but not everything about autonomous vehicles will be a panacea. Crankshaft reliability by integrated design, simulation, and testing This testing method is proven and beneficial for the design and development of the crankshaft and could be applied to other critical engine components, thereby extending to system reliability. New Engines 2016 Highlighting the design, engineering, and technologies inside some of the most competitive gasoline and light-duty diesel ICEs. Touch and go Avionics developments are changing life in the cockpit and at airborne work stations. Improving heavy-duty engine component efficiencies Cylinder deactivation can improve fuel economy by using a reduced number of cylinders that operate at higher loads and thermal efficiency, while other cylinders are turned off, when the engine operates at partial load conditions.
Magazine

MOBILITY ENGINEERING: June 2016

2016-06-01
Base-engine value engineering for higher fuel efficiency and enhanced performance Continuous improvement in existing engines can be efficiently achieved with a value engineering approach. The integration of product development with value engineering ensures the achievement of specified targets in a systematic manner and within a defined timeframe. Integrated system engineering for valvetrain design and development of a high-speed diesel engine The lead time for engine development has reduced significantly with the advent of advanced simulation techniques. Cars poised to become 'a thing' Making automobiles part of the Internet of Things brings both risks and rewards. Agility training for cars Chassis component suppliers refine vehicle dynamics at the high end and entry level with four-wheel steering and adaptive damping.
Technical Paper

Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions

2018-04-03
2018-01-0901
The automotive industry is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. In the US, 2025 standards for fuel economy and CO2 emissions are extremely stringent. Simultaneously, vehicles must comply with new US Tier 3 emissions standards. In all market segments, there is a need for very clean and efficient engines operating on gasoline fuels. Gasoline Direct Injection Compression Ignition (GDCI) has been under development for several years and significant progress has been realized. As part of two US DOE programs, Delphi has developed a third generation GDCI engine that utilizes partially premixed compression ignition. The engine features an innovative “wetless”, low-temperature, combustion system with the latest high-pressure GDi injection system. The system was developed using extensive simulation and engine testing.
Technical Paper

Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks

1998-11-30
982224
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
Magazine

Automotive Engineering: January 2018

2018-01-01
Level Zero hero Jeep's iconic Wrangler is all-new-and unapologetically analog. Fusing sensors for the automated-driving future Complex processing architectures, faster networks and even more sophisticated software are vital for 100% accurate Level 4 and 5 systems. Who wants Afreecar? One billion people globally survive on less than $2/day but desperately need personal mobility and electric power. One of the auto industry's most creative minds offers what could be a unique and sustainable solution. Dana opens new chapter on CVTs A dedicated development center is hustling the unique VariGlide "spherical traction drive" toward 2020 production. Plastics key to mobility innovations The 2017 SPE Innovation Awards highlight the design, engineering and materials-science collaborations between vehicle OEMs and their tier suppliers.
Training / Education

Powertrain Selection for Fuel Economy and Acceleration Performance

Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
Training / Education

Improving Fuel Efficiency with Engine Oils

Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Book

Chassis Dynamometer Testing: Addressing the Challenges of New Global Legislation

2017-06-29
The use of the chassis dynamometer test cells has been an integral part of the vehicle development and validation process for several decades, involving specialists from different fields, not all of them necessarily experts in automotive engineering. CHASSIS DYNAMOMETER TESTING: Addressing the Challenges of New Global Legislation (WLTP and RDE) sets out to gather knowledge from multiple groups of specialists to better understand the testing challenges associated with the vehicle chassis dynamometer test cells, and enable informed design and use of these facilities.
Technical Paper

Determination of a Tyre’s Rolling Resistance Using Parallel Rheological Framework

2019-06-20
2019-01-5069
Nowadays, rolling resistance sits at the core of tyre development goals because of its considerable effect on the car’s fuel economy. In contrast to the experimental method, the finite element (FE) method offers an inexpensive and efficient estimation technique. However, the FE technique is yet to be a fully developed product particularly for rolling-resistance estimation. An assessment is conducted to study the role of material viscoelasticity representation in FE, in linear and non-linear forms, through the use of Prony series and parallel rheological framework (PRF) models, respectively, on the tyre’s rolling-resistance calculation and its accuracy. A unique approach was introduced to estimate the rolling resistance according to the tyre’s hysteresis energy coefficient.
X