Refine Your Search




Search Results

Technical Paper

some recent experiments on the FRICTION, WEAR, AND DEFORMATION OF SOLIDS

EXPERIMENTS have been conducted at Cambridge University which probed the sliding friction and wear of nonmetals, and the deformation of solids at high rates of strain. The author was particularly interested in the deformation and damage of metals and nonmetals under high-speed liquid impact. The findings will contribute to the development of materials that can withstand the friction of high-speed space flight. The author discusses the sliding friction and wear of wood, diamond, glass, rubber, and metallic carbides. In the last part of the paper, he describes the high-speed problems arising when solids are deformed very rapidly.
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

prediction in new Metal Joining Processes

NEW WELDING processes are dropping costs while providing improvements in weld quality. This paper describes some of the more promising new developments in pressure and fusion welding and brazing. Included in the discussion are ultrasonic, high frequency resistance, foil seam, magnetic force, percussion, friction, and thermopressure welding and diffusion bonding. The description of adhesive bonding includes the development of glass or ceramic materials as structural adhesives.*
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Technical Paper

euces Software Development

The euces project was initiated to be prepared for the future role of EADS as stage system prime for stage and launcher developments. Launcher stages for NGLV need to meet ambitious mission and operational demands. The paper will present a brief overview of the currently existing COMPONENT libraries and its possibilities as well as an application example which will be a simplified functional model of the ARIANE 5 EPS upper stage w.r.t. physical model formulation of its incorporated components, its schematic, data initialisation and simulation results obtained. The simulation results will be compared to flight data of a dedicated flight.
Technical Paper

e-Thermal: Automobile Air-Conditioning Module

e-Thermal is a vehicle level thermal analysis tool developed by General Motors to simulate the transient performance of the entire vehicle HVAC and Powertrain cooling system. It is currently in widespread (global) use across GM. This paper discusses the details of the air-conditioning module of e-Thermal. Most of the literature available on transient modeling of the air conditioning systems is based on finite difference approach that require large simulation times. This has been overcome by appropriately modeling the components using Sinda/Fluint. The basic components of automotive air conditioning system, evaporator, condenser, compressor and expansion valve, are parametrically modeled in Sinda/Fluint. For each component, physical characteristics and performance data is collected in form of component data standards. This performance data is used to curve fit parameters that then reproduce the component performance.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Zone of Influence of Porous Suction Tubes in Condensing Heat Exchanger for Space Systems

A “next generation” condensing heat exchanger for space systems has to satisfy demanding operational requirements under variable thermal and moisture loads and reduced gravity conditions. Mathematical models described here are used to investigate transient behavior of wetting and de-wetting dynamics in the binary porous system of porous tubes and porous cold plate. The model is based on the Richard's equation simplified for the zero-gravity conditions. The half-saturation distance or the zone of influence of the porous annular suction tubes on the cold-plate porous material will be in the range of 1 to 10 cm for the time scales ranging from 100 to 10,000 seconds and moisture diffusivity in the range of D = 10-4 to 10-6 m2/s.
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zinc-Manganese Alloy Electroplated Steel for Automotive Body

Zinc-manganese alloy electroplated has been developed for automotive body panel applications. The product is manufactured on a conventional electrogalvanizing line using an electrolyte containing zinc sulfate, manganese sulfate and sodium citrate. Electroplated steel with an alloy content of 30-50% manganese exhibits excellent corrosion resistance both as-produced and after painting. Zinc-manganese coatings also show good workability and voidability. Accordingly, this product is suitable for both unexposed parts and the interior surfaces of exposed parts. Finally, zinc-manganese electroplated steel displays good wet adhesion and anti-cratering characteristics so that the product can also be used for exposed applications as automotive body panels.
Technical Paper

Zinc-Magnesium-Aluminium (ZM)-HDG-Coated Steel Sheet for Structural Parts to Outer Panels

Zinc-coatings with a substantial Magnesium content have been in use for over 30 years by now. Unlike the well-established Zn-Al-Mg coatings originating from Japan which have significant higher alloying contents applied mainly for building applications, this Zinc Magnesium Aluminum coating (ZM) is also specifically designed to meet the requirements of car manufacturers. The ZM coating introduced by voestalpine, corrender, is in the upper range of ZM-alloying compositions, which was set by VDA (German Association of the Automotive Industry) and SAE to be within 1.0 to 2.0 wt. % Mg and 1.0 to 3.0 wt. % Al. The properties of these “European” Zinc-Magnesium coatings are well comparable within this range. Compared to GI and GA ZM coatings exhibit significant advantages in the press shops with its excellent formability and reduced galling and powdering respectively which is a significant advantage for the forming of outer panels.
Technical Paper

Zinc, a Versatile, Strategic World Commodity

A presentation on zinc demonstrating its versatile applications to the auto industry. A review of metal balances, domestic, world and major producing countries. The energy required to mine, smelt and refine zinc is compared to other metals. The value of recycling zinc is also considered. This paper concludes with a statement, supported with evidence, that today's automobile is a better buy than twenty years ago.
Technical Paper

Zinc on the Move: Advancements in Coatings and Castings Keep the Metal Competitive

For over a decade, industry prognosticators have been predicting that the use of plastics by automakers would soon surpass the deployment of metals in automobiles, While there is no denying that plastics have made inroads, it recently has become apparent that metal will retain its position as the prime car material for the foreseeable future. One reason for the revised forecast is the development of improved zinc coatings for the automotive industry. Such material as electrogalvanized and Galfan™ are shaping up as steel's saviors when it comes to ensuring that metal will continue to play the major role on car assembly lines. Meanwhile on the other side of the equation, developments in zinc die casting technology have taken the edge off plastics' forward thrust into both functional and decorative car part applications.
Technical Paper

Zinc Soldered Copper and Brass Radiators: Their Processing and Their Test Results

Copper and brass radiators have served the automobile industry for many years using traditional fabrication processes. Demand for newer and stronger radiators with lighter weight for the modern vehicles prompted investigation of alternate materials. Properties of zinc alloys and their compatibility with brass suggested these could be used for radiator manufacture. Many zinc alloy compositions were investigated in the initial studies, because a solder alloy has to have many positive attributes. The first screening studies evaluated the ability of the solder to spread over copper and brass surfaces, representing tube, fin, and header materials. The second most important feature was the melting range of the developed alloy. In order to retain the anneal resistance of the fin and temper in the tube it was desirable to have a zinc solder with a melting temperature at 800°F or less.

Zinc Phosphate Treatment Paint Base

This specification covers the requirements for producing a zinc phosphate coating on ferrous alloys and the properties of the coating.