Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Journal Article

Closed-Form Structural Stress Solutions for Spot Welds in Square Plates under Central Bending Conditions

2019-04-02
2019-01-1114
A new closed-form structural stress solution for a spot weld in a square thin plate under central bending conditions is derived based on the thin plate theory. The spot weld is treated as a rigid inclusion and the plate is treated as a thin plate. The boundary conditions follow those of the published solution for a rigid inclusion in a square plate under counter bending conditions. The new closed-form solution indicates that structural stress solution near the rigid inclusion on the surface of the plate along the symmetry plane is larger than those for a rigid inclusion in an infinite plate and a finite circular plate with pinned and clamped outer boundaries under central bending conditions. When the radius distance becomes large and approaches to the outer boundary, the new analytical stress solution approaches to the reference stress whereas the other analytical solutions do not.
Journal Article

Finite Element Analyses of Structural Stresses near Dissimilar Spot Joints in Lap-Shear Specimens

2019-04-02
2019-01-1112
Structural stress distributions near nearly rigid, dissimilar and similar spot joints in lap-shear specimens are investigated by 3-D finite element analyses. A set of accurate closed-form structural stress solutions is first presented. The closed-form structural stress solutions were derived for a rigid inclusion in a square thin plate under various loading conditions with the weak boundary conditions along outer edges or semi-circular paths by satisfying the equilibrium conditions. Finite element analyses with different joint material behaviors, element types and mesh designs are conducted to examine the structural stress solutions near the spot joints in lap-shear specimens. The results of the finite element analyses indicate that the computational structural stress solutions on the edge of the joint depend on the joint material behavior, element type, and mesh design.
Journal Article

Three-Dimensional Finite Element Analyses of Local Stress Intensity Factor Solutions for Kinked Cracks of Spot Welds in Commonly Used Specimens

2019-04-02
2019-01-1110
Local stress intensity factors (LSIFs) for kinked cracks of spot welds in four specimens, lap-shear, cross-tension, U-shaped, and coach-peel, were studied by three-dimensional finite element analyses. Finite element models for spot welds without and with kinked cracks were developed. Semi-elliptical cracks with various kinked crack lengths were assumed. Two dominant cracking modes for each specimen were considered. The global stress intensity factor (GSIF) solutions for spot welds without kinked cracks were first obtained to determine the analytical LSIF solutions for spot welds with infinitesimal kinked cracks. The LSIF solutions for spot welds with finite kinked cracks were then obtained. The LSIF solutions of the four specimens show similar general trends. As kinked crack length increases, the mode I LSIF solutions gradually increase and then decrease, while the mode II LSIF solutions show inverse trends.
Journal Article

Effects of Nitrided and Chrome Plated Die Surface Roughness on Friction in Bending Under Tension

2019-04-02
2019-01-1093
Different die surface polish conditions result in a noticeable effect on material flow in stamping, which can lead to splitting, wrinkling, or other surface stretching issues associated with different friction conditions. These occurrences are not only limited to the non-coated dies, but also nitrided and chrome plated dies. To ensure quality control of the stamped parts, the die conditions corresponding to different polishing procedures need to be developed based on measurable parameters such as surface roughness (Ra). The intent of this study is to investigate the effects of nitrided and chrome plated die surface roughness on friction. The Bending-Under-Tension (BUT) test was conducted to simulate the stamping process due to the test’s versatility and flexibility in changing test parameters. The test involves moving sheet metal across a 3/8-inch diameter pin, which substitutes for a die surface. The pin can be modified by material, heat treatment, coating, and surface roughness.
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Journal Article

Energy Saving Glazing and Its Compatibility with Heating, Antenna and Wireless Communication

2019-04-02
2019-01-1057
Conductive heat reflecting automotive windows significantly attenuate RF communication signals. A number of methods are available to maintain electromagnetic compatibility and the function of these and other devices in the passenger compartment, while accruing the heat load reduction benefits of the coating. One of the methods is to integrate antennas on to the coated glazing and have glass antenna act as a communication interface between inside and outside of the vehicle. Another approach is to design a wideband or bandpass Frequency Selective Surface (FSS) window to facilitate wireless communication while preserving the thermal performance of the window. This paper provides detailed overview on coated antennas for vehicle communications, FSS window design for wideband and bandpass applications and coated antenna combined with de-ice and de-fogger functions with some designs and testing data.
Journal Article

Color and Height Characteristics of Surrogate Grass for the Evaluation of Vehicle Road Departure Mitigation Systems

2019-04-02
2019-01-1026
In recent years Road Departure Mitigation Systems (RDMS) is introduced to the market for avoiding roadway departure collisions. To support the performance testing of the RDMS, the most commonly seen road edge, grass, is studied in this paper for the development of standard surrogate grass. This paper proposes a method for defining the resembling grass color and height features due to significant variations of grass appearances in different seasons, temperatures and environments. Randomly selected Google Street View images with grass road edges are gathered and analyzed. Image processing techniques are deployed to obtain the grass color distributions. The height of the grass is determined by referencing the gathered images with measured grass heights. The representative colors and heights of grass are derived as the specifications of surrogate grass for the standard evaluation of RDMS.
Journal Article

Vibration Rating Prediction Using Machine Learning in a Dynamic Skip Fire Engine

2019-04-02
2019-01-1054
Engines equipped with Dynamic Skip Fire (DSF) technology generate low frequency and high amplitude excitations that could reduce vehicles drive quality if not properly calibrated. The excitation frequency of each firing pattern depends on its length and on the rotational speed of the engine. Excitation amplitude mainly depends on the requested engine torque by the driver. During the calibration process, the torque characteristics that results in production level of noise, vibration, and harshness (NVH), must be identified, for each firing pattern and engine speed. This process is quite time consuming but necessary. To improve our process, a novel machine learning technique is utilized to accelerate the calibration effort. The idea is to automate the vibration rating procedure such that given the relevant power-train parameters, a vibration rating associated with that driving condition can be predicted. This process is divided into two (2) prediction models.
Journal Article

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
Journal Article

Further Experimental Investigation of Motored Engine Friction Using Shunt Pipe Method

2019-04-02
2019-01-0930
Mechanical friction is a significant power dissipater in the internal combustion engine. In the effort of designing more efficient and less pollutant engines, friction reduction is certainly on the agenda to be investigated. Such investigation cannot be possible without an accurate measurement of the same quantity. This publication regards a continued study on the mechanical friction determination in an internal combustion engine using the Pressurised Motoring Method. In this work, the friction mean effective pressure of a four-cylinder compression ignition engine was investigated with varying engine speed and manifold pressurisation, using a dedicated high precision sensor for the correct determination of the cylinder Top Dead Centre position.
Journal Article

Control Strategy and Energy Recovery Potential for P2 Parallel Hybrid Step Gear Automatic Transmissions

2019-04-02
2019-01-1302
The purpose of this investigation is to present a control strategy and energy recovery potential for P2 parallel hybrid step gear automatic transmissions. The automatic transmission types considered for the investigation are rear wheel drive 8 speed dual clutch transmission and 8 speed planetary automatic equipped each equipped with an electric motor between the engine and transmission. The governing equations of clutch-to-clutch upshift controls are presented and are identical for each transmission type. Various strategies are explored for executing the upshift under a range of input torques, shift times and engine torque management approaches. The differences in energy recovery potential based upon control strategy is explored piecewise as well as through a DFSS study. On a comprehensive drive cycle consisting of FTP 75, US06 and HWFET test cycles, it is shown that upshift regen torque management can be equivalent to approximately 0.8% of the total fuel energy used.
Journal Article

Electrified Drive-Unit Parametric Mechanical-Loss Model Development and Calibration

2019-04-02
2019-01-1298
As the automotive industry vies to meet progressively more stringent global CO2 regulations in a cost-effective manner, electrified drive system cost and losses must be reduced. To this end, a parametric Drive Unit (DU) mechanical-loss model was developed to aid in the design and development of electrified propulsion systems, where the total propulsion system cost and DU losses can be directly linked (e.g., Hybrid Electric Vehicle (HEV) motor/inverter/engine content, or Battery Electric Vehicle (BEV) battery size). Many DUs for electrified propulsion systems are relatively “simple” drive systems, consisting of gears, bearings, shafts, lip seals, and an electric motor(s), but without clutches, high-pressure lube systems, or chains/belts as found in conventional automatic transmissions. The DU loss model described in this paper studies these simple DUs, with the mechanical losses dissected into 10 loss components.
Journal Article

Optimization of Catalytic Converter Design to Improve Under-Hood Thermal Management

2019-04-02
2019-01-1263
The Catalytic Converter along with the inlet pipe and heat shields are part of the exhaust system that emits powerful heat to the surrounding components. With increasing need for tight under-hood spaces it is very critical to manage the heat emitted by the exhausts that may significantly increase temperature of surrounding components. In this paper a design methodology for catalytic converter has been applied which optimizes the design of the catalytic converter to reduce the surface temperature. The exhaust surface temperature is simulated as a function of time to account for transient effects. The simulation also considers various duty cycles such as road load, city traffic and grade driving conditions. To control the heat output of the exhaust system to the surrounding components different materials and properties of catalytic converter have been considered to reduce radiative heat transfer.
Journal Article

Multi-Wavelengths Michelson Interferometer Based Spatial Phase Shift Shearography with Color Camera

2019-04-02
2019-01-1269
The paper describes the use of a color camera for spatial phase shift shearography according to the carrier frequency method, whereby the focus is on measurement stability and practical usability. The basics are derived from the simple and extremely robust Michelson interferometer setup with spatial aperture and quality criteria are formulated according to the achievable result quality. The state of research of Multi-Wavelengths application is shown in general as well as in a publication, which serves as a further basis for comparison. The use of three laser sources and a Bayer-Matrix RGB color camera is considered to be the most effective method for the following development. For this purpose, the 3 out-of-plane illumination arrangement is used, which provides the three separate results in the spatial directions in only one measurement (for shear direction in x).
Journal Article

SAE ARP6338: Process for Assessment and Mitigation of Aging and Potential Early Wearout of Life-Limited Microcircuits (LLM)

2019-04-02
2019-01-1254
This paper describes a Reliability Physics Analysis process to assess aging and the potential for early wearout of microcircuits, as documented in SAE ARP6338. As microcircuit feature sizes (gate length, line width, etc.) continue to shrink to near atomic levels, they become increasingly susceptible to aging mechanisms such as Electromigration, Time-Dependent Dielectric Breakdown, Hot Carrier Injection and Bias Temperature Instability effects. These mechanisms are driven by voltage, current and thermal operating stresses resulting in shorter times for aging to progress to the point where wearout can occur. If the times to wearout are shorter than the required lifetimes of the microcircuits in their applications, the microcircuits are called Life-Limited Microcircuits. A brief overview of these aging mechanisms and their impact on the long-life electronics systems used in Aerospace, Automotive, Defense, and other High Performance industries is provided.
Journal Article

Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System

2019-04-02
2019-01-1259
One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction.
Journal Article

Reliability Physics Approach for High-Density Ball Grid Arrays in Autonomous Vehicle Applications

2019-04-02
2019-01-1251
Integration of advanced sensing systems in autonomous vehicles is possible due to high performance processors that utilize high-density ball grid array (HD-BGA) packaging. The configuration of advanced sensors within autonomous vehicles requires the placement of processing modules within non-conventional vehicles compartments that can drastically influence the reliability of HD-BGAs. Durability of HD-BGAs to different loads depend on their location within the vehicle as well as the form factor of the package itself. Reliability Physics Approach (RPA) combines simulation tools and empirical models to predict the reliability of advanced electronic packages under complex environmental and operational loads by identifying the susceptibility of electronic components to the dominant failure mechanism.
Journal Article

Modeling Static Load Distribution and Friction of Ball Bearings and BNAs: Towards Understanding the “Stick-Slip” of Rack EPAS

2019-04-02
2019-01-1240
Electric power assisted steering (EPAS) systems are widely adopted in modern vehicles to reduce the steering effort of drivers. In rack EPAS, assist torque is applied by a motor and transmitted through two key mechanical components: ball bearing and ball nut assembly (BNA) to turn the front wheels. Large combined load and manufacturing errors not only make it hard to accurately calculate the load distribution in the ball bearing and BNA for the purpose of sizing, but also make the friction behavior of EPAS gear complicated. Rack EPAS gear is well known to suffer from “stick-slip” (i.e., sticky feel sensed by the driver), which affects the user experience. “Stick-slip” is an extreme case of friction variation mainly coming from ball bearing and BNA. Finite Element Analysis (FEA) in commercial software like ANSYS is usually conducted to study the load distribution and friction of ball bearing and BNA.
Journal Article

Securing Printed Board Performance and Assembly Reliability in Automotive Applications through IPC Standards

2019-04-02
2019-01-1253
Industry consensus developed IPC standards for the automotive electronics manufacturer have been available since 2016. We will look at the current IPC standards available in development and in revision, the standards development process, and the automotive application addendums for printed board fabrication and assembly soldering that provide unique criteria for the reliability of electronic interconnects that must survive the harsh environments within the automotive industry. Attention will be given to a new effort in development to provide links between existing automotive-centric IPC standards and other industry standards applicable to automotive applications for printed board material selection, design, and solder joint reliability testing. We will also discuss challenges facing the industry, including process changes and cleanliness requirements, e.g. ionic contaminants, that affect every manufacturer and customer.
X