Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Technical Issues of 100Mbit/s Ethernet Transmission based on Standard Automotive Wiring Components

2014-04-01
2014-01-0249
The presentation describes a technical solution for 100 Mbit/s Ethernet Data transmission cabling. This solution considers the specific requirements of automotive wiring harness and manufacturing. It bases on standard automotive connectors and headers. Currently the development of automotive electronic architecture considers central ECU or data backbone structure for the upcoming EE architecture (e. g. single ECU for network; SEN). For these structures solid and cost effective data backbone solutions are essential. Ethernet, a wide distributed and well-known bus system for office and industry data distribution provide a wide range of software tools and many physical layer solutions. Several cabling systems are available. Based on this we propose a solution for automotive application.
Journal Article

Verification of Flag Usage Patterns by Static Analysis Techniques

2014-04-01
2014-01-0180
A flag is a global boolean variable used to achieve synchronization between various tasks of an embedded system. An application implementing flags performs actions or events based on the value of the flags. If flag variables are not implemented properly, certain synchronization related issues can arise which can lead to unexpected behavior or failure of the underlying system. In this paper, we present an automated verification technique to identify and verify flag usage patterns at an early stage of code development. We propose a two-step approach which consists of: a. identification of all potential flag variables and b. verification of flag usage patterns against predefined set of rules. The results of our experiment demonstrate that the proposed approach reduces the cost and complexity of the flag review process by almost 70%.
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Journal Article

Model-Based Real-Time Testing of Embedded Automotive Systems

2014-04-01
2014-01-0188
The paper presents a model-based approach to testing embedded automotive software systems in a real-time. Model-based testing approach relates to a process of creating test artifacts using various kinds of models. Real-time testing involves the use of a real-time environment to implement test application. Engineers shall use real-time testing techniques to achieve greater reliability and/or determinism in a test system. The paper contains an instruction how to achieve these objectives by proper definition, implementation, execution, and evaluation of test cases. The test cases are defined and implemented in a modeling environment. The execution and evaluation of test results is made in a real-time machine. The paper is concluded with results obtained from the initial deployment of the approach on a large scale in production stream projects.
Journal Article

Development and Implementation of SAE J2953 for AC Charging

2014-04-01
2014-01-0184
The purpose of this paper is to outline the development and implementation of SAE J2953. SAE J2953 contains the requirements and procedures of interoperability testing. Within SAE J2953 interoperability test articles are defined as an Electric Vehicle Supply Equipment (EVSE) paired with a Plug-in Electric Vehicle (PEV). SAE J2953 requires the development and application of test fixtures with the ability to monitor mechanical forces and electrical signals of a charge system without modification or disassembly of the EVSE and PEV under test. Electrical signal monitoring includes pilot, proximity, and line conductors of the SAE J1772 TM AC coupler. This paper will outline the requirements of the fixtures as well as a specific build. Data will be presented showing full implementation of the SAE J2953 procedures including root-cause analysis and standards gap discovery.
Journal Article

A Study on Modeling of Driver's Braking Action to Avoid Rear-End Collision with Time Delay Neural Network

2014-04-01
2014-01-0201
Collision avoidance systems for rear-end collisions have been researched and developed. It is necessary to activate collision warnings and automatic braking systems with appropriate timing determined by a monitoring system of a driver's braking action. Although there are various systems to monitor driving behavior, this study aims to create a monitoring system using a driver model. This study was intended to construct a model of a driver's braking action with the Time Delay Neural Network (TDNN). An experimental scenario focuses on rear-end collisions on a highway, such as the driver of a host vehicle controlling the brake to avoid a collision into a leading vehicle in a stationary condition caused by a traffic jam. In order to examine the accuracy of the TDNN model, this study used four parameters: the number of learning, the number of neurons in the hidden layer, the sampling time with 0.01 second as a minimum value, and the number of the delay time.
Journal Article

Electromagnetic Coupling for Wire Twisting Pitch Optimization for SRS Applications

2014-04-01
2014-01-0222
In the sensitive automotive applications like the safety restraint systems (SRS), twisted lines can be used to link the components of the system because of their property of reduction of the electromagnetic interference (EMI) coupling. Compared to the parallel lines, the twisted lines present the drawback to consume more copper in their manufacturing due to the greater length of their conductors. A parametric study based on the numerical modeling and the measurement of twisted lines is conducted in order to analyze the effect of the twisting pitch and of the untwisted part of these lines on the level of EMI coupling. This study will enable to optimize these two parameters in order to reduce the level of EMI coupling as well as the length of the conductors of the lines.
Journal Article

EMC Management in HEV/EV Applications

2014-04-01
2014-01-0219
Shielding of the high voltage cabling is a cost effective method for reducing unwanted EMI in hybrid and electric vehicles. Ensuring the shielding effectiveness (SE) of the high voltage (HV) cabling and connectors is critical at the component and subsystem level. The effectiveness of the shielding must also be proven for the useful life of the vehicle. This paper will examine some of the critical aspects of ensuring good SE of HV cabling and connectors in hybrid and electric vehicles. This paper will also review some of the test methods utilized to make these measurements.
Journal Article

Vibroacoustic Method of IC Engine Diagnostics

2014-04-01
2014-01-0282
The article provides the rationale for, and describes a new internal combustion engine (ICE) diagnosing method, which involves obtaining a signal within the audio frequency range and its examination together with engine performance through the use of algorithms of high resolution time-and-frequency analysis and techniques involving partial signal reconstruction in the phase space. Examples of how the method may be applied to reveal defects and faults of various units and systems are also described in the article. The paper shows that the method may also be used for other assemblies and units of cars (apart from engines) to analyze patterns for periodic wave structures.
Journal Article

Turbocharger Dynamics Influence on Optimal Control of Diesel Engine Powered Systems

2014-04-01
2014-01-0290
The importance of including turbocharger dynamics in diesel engine models are studied, especially when optimization techniques are to be used to derive the optimal controls. This is done for two applications of diesel engines where in the first application, a diesel engine in wheel loader powertrain interacts with other subsystems to perform a loading operation and engine speed is dictated by the wheel speed, while in the second application, the engine operates in a diesel-electric powertrain as a separate system and the engine speed remains a free variable. In both applications, mean value engine models of different complexities are used while the rest of system components are modeled with the aim of control study. Optimal control problems are formulated, solved, and results are analyzed for various engine loading scenarios in the two applications with and without turbocharger dynamics.
Journal Article

Model-Based Fault Diagnosis of Selective Catalytic Reduction Systems for Diesel Engines

2014-04-01
2014-01-0280
In this paper, a model-based diagnostic system was developed to detect and isolate the dosing fault and the outlet NOx sensor fault for the SCR system. The dosing fault is treated as an actuator additive fault, while the outlet NOx sensor drift and/or offset fault is treated as a sensor additive fault. First, a 0-D SCR model was developed to facilitate the model-based approach. A parity equation residual generator was designed based on the linearized SCR model and the fault transfer function matrix. The diagnostic algorithm is then implemented in the Matlab/Simulink environment for validation. A high fidelity nonlinear 1-D SCR model is used to generate system outputs and to simulate the plant. The simulation results show that the model-based fault diagnosis system succeeds in detecting and isolating the outlet NOx sensor and dosing faults with good sensitivity and robustness
Journal Article

Air Leak Detection for a Turbocharged SI Engine using Robust Estimation of the Turbocharger Dynamics

2014-04-01
2014-01-0279
Proper operation of an internal combustion engine is required by demands of a vehicle driver and governmental legislations. Therefore it is necessary to monitor, within an online technique, the engine and detect any fault which disrupts its normal operation. In this paper, the air-charge path, as a key element in a turbocharged engine, is monitored for an air leakage fault. At first, a robust algorithm to estimate unmeasured turbocharger rotational speed is presented. The sliding mode methodology is used to design the estimator which is shown to be robust to the compressor modeling uncertainties. The estimation error from the sliding mode observer (SMO) is then used to detect abnormal behavior of the turbocharger along with the engine due to a leakage fault in the air-charge path. Experimental results from a modern turbocharged SI engine indicate the designed monitoring technique is able to detect a leakage fault, of 7 mm or higher sizes, in the air-charge path.
Journal Article

A New Method for Target Object Selection for ACC System Based on Analysis of Vehicle Trajectories

2014-04-01
2014-01-0301
The trajectory variation of preceding objects with changing road curvature and uncertain driving behaviors of both host and preceding cars make it difficult for conventional radar-based Adaptive Cruise Control (ACC) system to effectively select its valid target object, which is mainly caused by the deficient judgment about the preceding curves and the behaviors of preceding cars. Through analysis of the trajectories that host and preceding objects generate, the new proposed method can differentiate the operating conditions of each car, either in straight lane, on curve or in lane-change, thus front path prediction and host vehicle's future lane estimation can be precisely fulfilled. From radar and host car's information a coordinate that changes under several criteria can be established, and based on this coordinate the trajectories of preceding and host car can be recorded and analyzed, some mathematics methods are adopted to reach the qualitative conclusion.
Journal Article

Modeling, Experimentation and Sensitivity Analysis of a Pneumatic Brake System in Commercial Vehicles

2014-04-01
2014-01-0295
The main purpose of this research is to investigate the optimal design of pipeline diameter in an air brake system in order to reduce the response time for driving safety using DOE (Design of Experiment) method. To achieve this purpose, this paper presents the development and validation of a computer-aided analytical dynamic model of a pneumatic brake system in commercial vehicles. The brake system includes the subsystems for brake pedal, treadle valve, quick release valve, load sensing proportional valve and brake chamber, and the simulation models for individual components of the brake system are established within the multi-domain physical modeling software- AMESim based on the logic structure. An experimental test bench was set up by connecting each component with the nylon pipelines based on the actual layout of the 4×2 commercial vehicle air brake system.
Journal Article

Control Variables Optimization and Feedback Control Strategy Design for the Blended Operating Regime of an Extended Range Electric Vehicle

2014-04-01
2014-01-1898
In an authors' previous SAE publication, an energy management control strategy has been proposed for the basic, charge-depleting/charge-sustaining (CD/CS) regime of an Extended Range Electric Vehicle (EREV). The strategy is based on combining a rule-based controller, including a state-of-charge regulator, with an equivalent consumption minimization strategy. This paper presents an extension of the control strategy, which can provide a favorable vehicle behavior in the more general blended (BLND) operating regime, as well. Dynamic programming-based control variables optimization is first conducted to gain an insight into the vehicle optimal behavior in the BLND regime, facilitate the feedback control strategy development/extension, and serve as a benchmark for the control strategy verification. Next, a parameter optimization method is applied to find optimal values of critical engine on/off thresholds.
Journal Article

Optimal Design of an Interior Permanent Magnet Synchronous Motor for Wide Constant-Power Region Operation: Considering Thermal and Electromagnetic Aspects

2014-04-01
2014-01-1889
The paper proposes a design optimisation of an Interior Permanent Magnet synchronous motors with maximum output power density and suitable for wide constant-power region operation. In this paper, analytical magnetic and electrical models of the machine are developed to calculate parameters and variables of the machine needed for a design optimization such as flux, resistance and inductances. And then, the thermal aspect is modelled using a thermal lumped-parameter network which allows to estimate the machine temperatures at key points such as the windings and the magnet. These models are included in the optimization loop and so are evaluated at each iteration. The optimization method uses a differential evolution algorithm (DEA). Finally, output performances of the designed motor are verified by finite element analysis (FEA).
Journal Article

Compact, Safe and Efficient Wireless and Inductive Charging for Plug-In Hybrids and Electric Vehicles

2014-04-01
2014-01-1892
Conventional charging systems for electric and plug-in hybrid vehicles currently use cables to connect to the grid. This methodology creates several disadvantages, including tampering, risk, depreciation and non-value added user efforts. Loose or faulty cables may also create a safety issue. Wireless charging for electric vehicles delivers both a simple, reliable and safe charging process. The system enhances consumer adoption and promotes the integration of electric vehicles into the automotive market. Increased access to the grid enables a higher level of flexibility for storage management, increasing battery longevity. The power class of 3.7kW or less is an optimal choice for global standardization and implementation, due to the readily available power installations for potential customers throughout the world. One of the key features for wireless battery chargers are the inexpensive system costs, reduced content and light weight, easing vehicle integration.
Journal Article

State of the Art and Future Trends of Electric Drives and Power Electronics for Automotive Engineering

2014-04-01
2014-01-1888
Discussions about the optimal technology of propulsion systems for future ground vehicles have been raising over the last few years. Several options include different types of technologies. However, those who are advocating conventional internal combustion engines are faced with the fact that fossil fuels are limited. Others favor hydrogen fuel as the solution for the future, either in combination with combustion engines or as an energy carrier for fuel cells. In any case, the production and storage of hydrogen is an ongoing challenge of numerous research works. Finally, there are battery-electric or hybrid propulsion systems in use, gaining more and more popularity worldwide. Ongoing advances in power electronics help to improve control systems within automotive applications. New developed or designed components enable more efficient system architectures and control.
Journal Article

An Accurate Modeling for Permanent Magnet Synchronous Wheel Motor Including Iron Loss

2014-04-01
2014-01-1867
For high torque permanent magnet wheel motor, this paper describes an experimental research method to optimize and identify the motor parameters based on the results of offline calculation. In order to improve the accuracy of motor parameters identification, the motor model considering the affect of iron loss was established, and the motor parameters were identified using genetic algorithm (GA). Based on this, parameters validation experiment was performed. The results show that: parameters obtained by this method can be used to describe the steady-state and transient-state response of permanent magnet synchronous motors accurately.
Journal Article

A Review of Various Converter Topologies for SRM Drives

2014-04-01
2014-01-1881
The switched reluctance motor (SRM) driver is receiving increasing attention from various researchers as well as industry as a viable for adjustable speed and servo applications. Combining the unique features of an SRM with simple and efficient power converter that in use, a superior motor drive system emerges which may be preferable for many applications compared to other AC or DC motor driver systems. Although a number of converters have emerged over the years for SRM drives, but every single driver has its own advantages and drawbacks and there has always been a trade-off between gaining something of the advantages and losing some when a new driver is offered.
X