Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Simulating the Static and Dynamic Response of an Automotive Weatherstrip Component

2011-05-17
2011-01-1602
Understanding the resonant behavior of vehicle closures such as doors, hoods, trunks, and rear lift gates can be critical to achieve structure-borne noise, vibration, and harshness (NVH) performance requirements, particularly below 100Hz. Nearly all closure systems have elastomer weatherstrip components that create a viscoelastic boundary condition along a continuous line around its perimeter and is capable of influencing the resonant behavior of the closure system. This paper outlines an approach to simulate the static and dynamic characteristics of a closed-cell Ethylene Propylene Diene Monomer (EPDM) foam rubber weatherstrip component that is first subjected to a large-strain quasi-static preload with a small-strain sinusoidal dynamic load superimposed. An outline of a theoretical approach using “phi-functions” as developed by K.N. Morman Jr., and J.C.
Technical Paper

Analysis of Flow Induced Noise in a Passenger Car Exhaust System - An Experimental and Numerical Approach

2011-05-17
2011-01-1528
A muffler or silencer is an integral part of the exhaust system and is a device used to prevent sound from reaching the openings of the exhaust duct and radiating as far field noise. Different acoustical design and analysis techniques are used to predict the acoustical performance of exhaust systems. Flow noise from exhaust tail pipe is one of the major noise sources in a vehicle. Flow noise is generated mainly during fast acceleration operating condition due to complex flow behavior. In this paper, we have studied the detailed flow field and tried to establish an analyses procedure for flow noise prediction. The flow analysis is carried out in commercial CFD solver Star CCM+. The transient engine boundary conditions are obtained from the experimental testing. The flow noise generated from the muffler was calculated by acoustic analogy of Lighthill using the above boundary conditions.
Journal Article

Prediction of Surge in a Turbocharger Compression System vs. Measurements

2011-05-17
2011-01-1527
The unsteady surge behavior of a turbocharger compression system is studied computationally by employing a one-dimensional engine simulation code. The system modeled represents a new turbocharger test stand consisting of a compressor inlet duct breathing from ambient, a centrifugal compressor, an exit duct connected to an adjustable-volume plenum, followed by another duct which incorporates a control valve and an orifice flow meter before exhausting to ambient. Characteristics of mild and deep surge are captured as the mass flow rate is reduced below the stability limit, including discrete sound peaks at low frequencies along with their amplitudes in the compressor (downstream) duct and plenum. The predictions are then compared with the experimental results obtained from the cold stand placed in a hemi-anechoic room.
Technical Paper

Sound Metric Balance of Engine Cooling Fan Noise to enable Delivery of Good Exterior Sound Quality

2011-05-17
2011-01-1530
The drive for lower CO₂ emissions places ever greater demand on cooling dissipation for a multi-cylinder internal combustion engine. This challenge has increased the requirements of the engine cooling system, particularly in countries where high ambient temperatures prevail and HVAC usage is high. Environmental necessity coupled with market demands have resulted in cars which emit a higher level of cooling fan noise which is intrusive in an urban environment and objectionable to customers. Conventional quantification of noise using traditional units and metrics was found to be insufficient for effective Sound Quality analysis. To assist Bentley Motors, a high performance luxury vehicle manufacturer, with its brand cachet and its commitment to the environment and customer, a new sound metric analysis has been devised to help the business deliver an ever-quieter exterior power unit cooling system.
Journal Article

Three-pass Perforated Tube Muffler with End-resonator

2011-05-17
2011-01-1529
The one-dimensional analytical approach, three-dimensional finite element method (FEM) and boundary element method (BEM) are developed to predict and analyze the acoustic attenuation performance of three-pass perforated tube muffler with end-resonator. For an elliptical muffler, the predictions of transmission loss from the FEM and BEM agree well each other throughout the frequency range of interest, while the one-dimensional analytical solution shows a reasonable agreement with the numerical predictions at lower frequencies and deviates at higher frequencies. The FEM is then used to investigate the effects of geometrical parameters and internal structure on the acoustic attenuation performance of three-pass perforated tube muffler with end-resonator.
Technical Paper

Flow Noises Associated with Integrated Compressor Anti-Surge Valve

2011-05-17
2011-01-1532
Turbocharged gasoline engines are typically equipped with a compressor anti-surge valve or CBV (compressor by-pass valve). The purpose of this valve is to release pressurized air between the throttle and the compressor outlet during tip-out maneuvers. At normal operating conditions, the CBV is closed. There are two major CBV mounting configurations. One is to mount the CBV on the AIS system. The other is to mount the CBV directly on the compressor housing, which is called an integrated CBV. For an integrated CBV, at normal operating conditions, it is closed and the enclosed passageway between high pressure side and low pressure side forms a “side-branch” in the compressor inlet side (Figure 12). The cavity modes associated with this “side-branch” could be excited by shear layer flow and result in narrow band flow noises.
Technical Paper

Derivation of the Force Interaction within Strongly Coupled Systems - Application to Diesel Engine Oil Pumps

2011-05-17
2011-01-1531
Due to the increasing focus on noise and vibration for future vehicles, there is a need for a clear definition of the requirements between vehicle manufacturers and auxiliary suppliers. Auxiliary characterisations are also needed as input for structure-borne numerical prediction models. Strongly coupled systems are amongst the most difficult structure-borne noise issues, as the transmitted forces and powers are strongly dependent upon the mobilities of both the vibration source and receiver. The so-called “blocked forces” can be used as intrinsic source descriptions. The challenge is then to design auxiliary test benches perfectly rigid in the frequency range of interest. The current paper is based on the French research program MACOVAM dedicated to the vibro-acoustic characterisation of oil pumps for truck engines. An original test bench was designed to measure quasi-blocked forces over the [150 Hz-2800 Hz] frequency range.
Journal Article

Experimental and Calculation Analysis of Rotational Vibration for an Engine Front End Accessory Drive System

2011-05-17
2011-01-1534
Experimental methods for measuring static and dynamic characteristics of an engine Frond End Accessory Drive System (FEADS) are presented. The static performance of a FEADS is the static tension of the belt, and the dynamic properties of a FEADS are transverse vibration of belt, and rotational vibration performances that include rotational response of pulleys and tensioner arm, dynamic tension of belt span, slip factor between belt and pulley. A mathematical model and calculation method for rotational vibration analysis of a 8 pulley-belt FEADS is established. In the model, creeping effect of a belt on pulley wrap arc, viscous damping and dry friction of a tensioner are considered. In calculation of dynamic performances of the FEADS, the excitation torques with multi-frequency components from crankshaft torsional vibration are obtained from the measurement.
Technical Paper

Novel, Compact Devices for Reducing Fluid-Borne Noise

2011-05-17
2011-01-1533
Hydraulic systems pose a particular problem for noise control. Due to the high speed of sound in hydraulic fluids, components typically designed to reduce fluid-borne noise can easily exceed practical size constraints. This paper presents novel solutions to creating compact and effective noise control devices for fluid power systems. A hydraulic silencer is presented that utilizes a voided polymer lining in lieu of a pressurized bladder. Theoretical modeling is developed which predicts device performance and can assist in future design work. Experimental results are presented to demonstrate the performance of the device. Both voided and non-voided liners are tested to show the effect of the voiding on the performance. In addition, theoretical modeling and experimental results are presented for a prototype Helmholtz resonator that is two orders of magnitude smaller than previously developed devices.
Technical Paper

Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment

2011-05-17
2011-01-1535
Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring.
Technical Paper

Effect of Road Excitations on Driveline Output Torque Measurements

2011-05-17
2011-01-1538
This paper presents the characterization of the random noise in driveline output shaft torque measurements that is commonly induced by road disturbances. To investigate the interaction between the shaft torque and road side excitation, torque signals are measured using a magnetoelastic torque sensor, as well as a conventional strain gauge sensor, under various types of road surfaces and conditions such as unevenness. A generalized de-trending method for producing a stationary random signal is first conducted. Statistical methods, in particular the probability density function and transform technique, are utilized to provide an evident signature for identifying the road excitation effect on the vehicle output shaft torque. Analysis results show how the road surface can act as a disturbance input to the vehicle shaft torque.
Technical Paper

Gas Injector Rail Calibration and Diagnosis by Means of Vibroacoustic Signal

2011-05-17
2011-01-1537
Paper presents the general assumptions for an gaseous fuels injector rail diagnosis and calibration with the application vibroacoustic methods, considerably different from used today methodology which typically base on measurements of mechanical dislocation of piston/nozzle, and injector flow rates has been described in the paper. Flow rates, as well as injector actuator stroke measurements are time-consuming and require the use of complex systems. This is what generally disables the methods currently in use from their integration in the continuous control system, especially into OBD. Methodology presented in the paper, based on simultaneous measurements of injector opening time and its vibration, allows an enhanced accuracy of the calibration and diagnosis process. It also shortens the time of calibration since it does not require invasion into mechanical system of injector rail and allows a quick and efficient assessment of its proper operation.
Journal Article

Dynamic Torque Characteristics of the Hydrodynamic Torque Converter

2011-05-17
2011-01-1540
The objective of this investigation is to characterize the torsional characteristics of the hydrodynamic torque converter. Analytical and experimental techniques are used to quantify the relationship between torsional oscillations imposed on the pump to those at the turbine as a function of frequency, operating point and design. A detailed model of the hydrodynamic torque converter based upon one-dimensional flow theory is used to establish fundamental torsional behavior independent of the downstream mechanical system. A simplified linear spring-mass-damper representation of the hydrodynamic torque converter is derived whose coefficients are proportional to pump speed for a particular design. A transmission dynamometer test cell with the capability to produce torsional oscillations was used to develop frequency response functions for various torque converters in a transmission, operating at steady state conditions.
Journal Article

Signal Analysis Techniques to Identify Axle Bearing Defects

2011-05-17
2011-01-1539
Vehicle NVH (Noise Vibration & Harshness) is of continued concern to customers in this increasingly competitive market and driveline NVH performance is a key factor in overall vehicle quality. A typical way to increase this quality is the use of axle end of line test stands that utilize NVH signal analysis methods to offer pass/fail criteria. In the manufacturing environment there are high costs associated with axle assemblies that are rejected due to the amount of time for NVH analysis to determine root cause for the failure. Of more interest to both product development and manufacturing activities is the ability to understand the root cause of the failures from the axle end of line test stand. This information can improve the manufacturing process by eliminating errors, streamlining re-build activities, aiding in product design improvements, and in turn reducing cost.
Technical Paper

Two-stage Gear Driveline Vibration and Noise

2011-05-17
2011-01-1542
Gear meshing noise is a common noise issue in manual transmission, its noise generation mechanism has been studied extensively [1, 2]. But most of time we have situations where multiple gear sets are connected in series and the noise and vibration behavior for a multi-stage gear can be quite different due to vibration inter-actions or interferences among multiple gear sets. In this paper, a two-stage gear driveline model was built using MSC ADAMS. Vibration order contents of a two-stage gear driveline were analyzed by both CAE simulation and theoretical calculations. In addition to gear meshing vibration orders of each gear set, the orders resulted from modulations between individual gear meshing and their harmonics were evident in the results. These special order contents were verified by experimental results, and also evidenced on transmission end of line tester results at transmission supplier GJT in Ganzhou, China.
Technical Paper

Difficulties Encountered in the Correlation of Vehicle Response to Bench Testing of Driveline Gearboxes for NVH Attributes

2011-05-17
2011-01-1541
Correlating a bench test stand to predict the response of a driveline gearbox in the vehicle can be very difficult. Many sources of variation and error may prevent correlation. This paper outlines the issues related to both vehicle and bench testing that prevents proper correlation. The importance of understanding both the NVH measurements and statistics are vital to proper interpretation. The identified issues are backed up with real test cases where these issues occurred in a series production gearbox program. A successful correlation case study is presented for comparison.
Technical Paper

An Application of Variation Simulation - Predicting Interior Driveline Vibration Based on Production Variation of Imbalance and Runout

2011-05-17
2011-01-1543
An application of variation simulation for predicting vehicle interior driveline vibration is presented. The model, based on a “Monte Carlo”-style approach, predicts the noise, vibration and harshness (NVH) response of the vehicle driveline based on distributions of imbalance and runout derived from manufacturing production variation (the forcing function) and the vehicle's sensitivity to the forcing function. The model is used to illustrate the change in vehicle interior vibration that results when changes are made to production variation for runout and imbalance of driveline components, and how those same changes result in different responses based on vehicle sensitivity.
Technical Paper

Torsional Analysis of Different Powertrain Configurations for Torque and Combustion Phase Evaluation

2011-05-17
2011-01-1544
This paper presents the results of several studies, performed on different powertrain configurations, aimed at analyzing the correlations existing between torque and speed frequency components in an internal combustion engine. Engine speed fluctuations depend in fact on torque delivered by each cylinder, therefore it is easy to understand how these two quantities are directly connected. The presented methodology allows identifying a dynamic model, expressed as a transfer function that depends only on the structure of the engine-driveline system. The identified model can be used to obtain information about torque delivered by the engine and combustion positioning within the engine cycle starting from engine speed measurement. The speed signal is picked up directly from the sensor facing the toothed wheel that is already mounted on the engine for control purposes.
Technical Paper

NVH Considerations for Zero Emissions Vehicle Driveline Design

2011-05-17
2011-01-1545
In response to environmental and fossil fuel usage concerns, the automotive industry will gradually move from Hybrid Electric Vehicles (HEV) which includes a shift of internal combustion engines toward Zero Emissions Vehicles (ZEV). Refinement is an important aspect in the successful adoption of any new technology and ZEV brings its own NVH challenges owing to the unique dynamic characteristics of the powertrain and driveline system. This paper presents considerations for addressing dynamic driveline NVH issues that are common to 100% electric vehicles; issues that manifest themselves as groans, rattles and clunks. A dynamic torsional analytical model of the powertrain & driveline will be presented. The analytical model served as the baseline for an extensive parametric study using the Genetic Algorithm (GA) technique, whereby the effectiveness of practical countermeasures was investigated.
Journal Article

Vehicle Design for Robust Driveline NVH Due to Imbalance and Runout Using a Monte Carlo Process

2011-05-17
2011-01-1546
Variation in vehicle noise, vibration and harshness (NVH) response can be caused by variability in design (e.g. tolerance), material, manufacturing, or other sources of variation. Such variation in the vehicle response causes a higher percentage of produced vehicles with higher levels (out of specifications) of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly. Measures must be taken to ensure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. This paper focuses on aspects of design variations that should be considered in the design process of drivelines. Variations due to imbalance and runout in rotating components can be unavoidable or costly to control.
X