Fuel cells ready for commercial deployment GM Hydrotec boss says hydrogen fuel cells now are a viable zero-emissions choice for work trucks, other transportation modes. Battery chemistries for construction EVs NMC and LFP lithium-ion batteries find favor in different regions as OEMs move to electrify larger excavators and loaders. Betting big on LFP battery cells for electric CVs Accelera by Cummins, Daimler Truck and Paccar collaborate to establish a 21-GWh dedicated factory in the U.S. with technology partner EVE Energy.
While there is a continued push toward mass adoption of electric vehicles globally, internal combustion engines seem posed to continue to play a key role in the mobility industry even as electrified powertrains continue to increase in market share. For internal combustion engines to continue to propel people and goods, engine technologies need to continuously improve in both efficiency and emissions. This paper will explore six technologies to increase the efficiency and reduce the emissions output of an engine in a plug-in hybrid-electric vehicle (PHEV). The technologies employed on this prototype vehicle include deceleration fuel cutoff, start–stop, increasing the mean engine operating temperature, preheating the engine oil, implementing an electrically heated catalyst, and air–fuel ratio control. Each of these technologies have been well studied and have demonstrated robustness through decades of deployments on road.
This SAE Aerospace Recommended Practice (ARP) establishes general criteria for the installation (e.g., type, location, accessibility, stowage) and crew member training needed for hand-held fire extinguishers.
Abstract An analytical method for nonlinear three-dimensional (3D) multi-body flexible dynamic time-domain analysis for a single-cylinder internal combustion (IC) engine consisting of piston, connecting rod, crank pin, and liner is developed. This piston is modeled as a 3D piston that collides with the liner as in a real engine. The goal is to investigate the piston slap force and subsequent liner vibration. Liner vibrational velocity is directly responsible for pressure fluctuations in the coolant region resulting in bubble formation and subsequent collapse. If the bubble collapse is closer to the liner surface, cavitation erosion in the liner might occur. The mechanism of liner cavitation is briefly explained, which would take a full computational fluid dynamics (CFD) model to develop, which is out of scope for the present work.
This document is a collection of comments on topics relevant to AMS powder feedstock production and procurement. In some instances it provides explanation of characteristics not controlled in AMS-AM powder feedstock specifications and the rationale for exclusion (e.g. limitation of applicability or maturity of standardized inspection techniques). In other cases it provides additional context on the reason for structuring requirements in AMS documents one way instead of other available options.
In order to determine if carbon–luffa hybrid composites are appropriate for automotive applications, this study gives a thorough mechanical evaluation of such materials. A potential path to improving the performance of automotive components is provided by combining the remarkable strength and stiffness of carbon fibers with the lightweight and environmentally friendly qualities of luffa fibers. The mechanical characteristics of the hybrid composites were characterized using a variety of experimental examinations, including tensile, flexural, and impact testing, and contrasted to those of traditional materials often used in the automobile sector. The composite containing 85% epoxy and 15% carbon fibers displayed the best tensile strength among the examined samples, reaching 168.58 MPa. However, 85% epoxy, 7.5% luffa, and 7.5% carbon fibers had a remarkable bending strength of 110.25 MPa.
High-temperature corrosion is a crucial issue in power plant components such as boilers and superheaters when they operate in high-temperature aggressive environments leading to early component failure. As a result, surface modification is critical to protect parts against various types of degradations and increase operational performance at the lowest possible cost. The present study deals with Metco 42C and cenosphere-based composite coating on ASME A387 Grade 22 boiler steel material. The coating compositions were prepared by weight fraction of 5% and 10% cenosphere with Metco 42C and coated on T22 boiler tube material by plasma spray technique. To check the performance a high-temperature cyclic oxidation study at 600°C for 20 cycles in a molten salt environment of sodium sulfate (40%Na2SO4) and vanadium pentoxide (60%V2O5) was carried out and simultaneously corrosion kinetics was evaluated after each cycle.