Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

USE OF ALUMINUM IN PRESENT AND FUTURE MOTOR CARS

1920-01-01
200038
Although aluminum is the most abundant metal in the earth's crust, it was not until the early eighties that means were discovered for reducing it from its ores in such quantities and at such cost as to make it a commercial possibility. The world immediately began to find uses for this material. Two groups developed; one, assuming for aluminum properties that it did not possess, thought that it would in time replace all other metals; the other, which, reacting from the first-mentioned view due to failures and disappointments, thought it had little use. It was afterward realized that much research was necessary to make aluminum a really commercial metal. One of the main aims of the automobile engineer is to obtain lightness combined with proper strength. The paper deals with decreasing the weight of automobiles by more extended use of aluminum alloys. The physical properties of aluminum are described in considerable detail and its varied uses are enumerated.
Technical Paper

PLYWOOD AND ITS USES IN AUTOMOBILE CONSTRUCTION

1920-01-01
200037
For many years plywood has been used for such automobile parts as roofs and dash and instrument-boards, but it was not until the closing of the European war that the extent to which this material was used in automobile construction greatly increased. The sudden requirement of airplanes created a large demand for plywood which would withstand the severest weather conditions. Glues were perfected that enabled plywood to withstand 8 hr. of boiling or 10 days of soaking in water without separation of the plies. Plywood as an engineering material is discussed. It is then compared in considerable detail with ordinary boards and also with metals and pulp boards, statistics and illustrations being given. The molding of plywood is considered with especial reference to employing plywood for surfaces having compound curvatures, and the limiting factors in the use of plywood for this purpose are mentioned.
Technical Paper

FLEXIBILITY IN ORGANIZATION

1920-01-01
200036
The only direction in which flexibility of an organization can be considered is that of successful progress. Flexibility uncontrolled is liable to lead to retrogression instead of progression. During the war, every available unit of man-power was called into use, and all specialized intelligence was stretched almost to the breaking point. This was particularly true of the intelligence in the automotive industry. Demands were made in connection with the airplane, tanks, agricultural tractor and submarine chasers, as well as the more stabilized automobile and trucks. The most skilful men naturally gravitated to the most difficult work, in the problems surrounding the airplane and the tank, and, while in general there were not nearly enough men, the scarcity of skill was more noticeable in the older branches of the industry. It was there that the necessity for a flexible organization demonstrated itself. The first necessity was a rigid base from which progress could be made.
Technical Paper

DESIGN FACTORS FOR AIRPLANE RADIATORS

1920-01-01
200026
The paper defines properties that describe the performance of a radiator; states the effects on these properties of external conditions such as flying speed, atmospheric conditions and position of the radiator on the airplane; enumerates the effects of various features of design of the radiator core; and compares methods that have been proposed for controlling the cooling capacity at altitudes. Empirical equations and constants are given, wherever warranted by the information available.
Technical Paper

FLYING AN AIRPLANE ENGINE ON THE GROUND

1920-01-01
200027
The very complete laboratory tests of airplane engines at ground level were of little aid in predicting performance with the reduced air pressures and temperatures met in flight. On the other hand, it was well-nigh impossible in a flight test to carry sufficient apparatus to measure the engine performance with anything like the desired completeness. The need clearly was to bring altitude conditions to the laboratory where adequate experimental apparatus was available and, to make this possible, the altitude chamber of the dynamometer laboratory at the Bureau of Standards was constructed. The two general classes of engine testing are to determine how good an engine is and how it can be improved, the latter including research and development work.
Technical Paper

ENGINE SHAPE AS AFFECTING AIRPLANE OPERATION

1920-01-01
200025
The annual report covering transportation by the largest British air-transport company laid particular emphasis upon the greater value of the faster machines in its service. Granted that efficient loads can be carried, the expense, trouble and danger of the airplane are justified only when a load is carried at far greater speed than by any other means. A reasonable conclusion seems to be that we can judge the progress made in aviation largely by the increased speed attainable. It is interesting and possibly very valuable therefore to inquire into the relations of power and resistance as applied to small racing machines with aircraft engines that are available.
Technical Paper

THE HEAT-TREATING OF BRAZED FITTINGS FOR AIRCRAFT

1920-01-01
200022
A tendency exists in most shops to assume that brazed joints cannot be successfully heat-treated. As a consequence, many fittings used in aircraft work and assembled by brazing smaller parts together are finished and installed without being heat-treated after the brazing operation. This practice causes parts to be used that not only do not develop the available strength of the material, but which are in some cases, under internal stress due to the heating in the brazing operation. Recent experiments made at the Naval Aircraft Factory show that the assumption mentioned is entirely erroneous. The author considers this matter with a view to specifying the use of steels and brazing spelters which will permit the subsequent or perhaps the simultaneous heat-treatment of the parts.
Technical Paper

MAINTAINING AIRPLANE ENGINE POWER AT GREAT ALTITUDES

1920-01-01
200023
Following the 1917 recommendation of the Bolling Airplane Mission that great energy be devoted to the development of means to maintain a high proportion of the power of airplane engines at great altitudes, some very creditable work was done. A recent flight test at 20,000-ft. altitude indicates a resultant marked increase in airplane performance. Interest in this development should be extended. The purpose of the paper is to indicate the possibilities and limitations of increasing airplane speed by introducing means to maintain high engine power at great altitudes. The DeHaviland-Four is selected as being, an airplane typical of present practice and the performances that might be obtained at different altitudes are approximately computed, with various assumed ratios of the actual engine power at the altitude to the total weight of the airplane in every case. The accompanying series of curves give the various coefficient results.
Technical Paper

ADAPTING TRUCK AND TRACTOR ENGINES TO MOTOR-BOAT USE

1920-01-01
200021
The automobile engine, as used in passenger cars and a large percentage of trucks, is not adapted to use in motor boats. It is not built substantially enough for this, inasmuch as the power output of the motor-boat engine, except during starting or landing, is always 100 per cent. In view of this and because tractor, truck and marine engines are of the same family, it appears that if a truck or tractor engine were made with 100 per cent continuous power output capacity it would be satisfactory for marine use. The author describes and illustrates a tractor engine modified for marine use. The lubrication system of this engine is explained. The respective merits of right and left-hand engines are discussed. It is stated in a twin-screw boat that it is unnecessary to have both engines run out-board; that both can turn in the same direction without causing material difference in results.
Technical Paper

MID-WEST SECTION PAPERS HEAVY-DUTY HIGH-SPEED ENGINE

1920-01-01
200076
The feeling that a truly heavy-duty engine for truck and tractor service was not available led the company represented by the authors to commence the development of an engine that would be capable of high speed as well as have ability to develop maximum horsepower and torque at low or medium speeds. Five specific requirements are stated for a tractor and three for a truck engine; the requirements of a universal truck and tractor engine are then specified under six headings. The special features of design of the engine developed are described in minute detail and illustrated by photographs and charts, seven definite features being mentioned as having been productive of the desired results. The testing apparatus is described and power and torque curves, a timing diagram and capacity curves of the water and oil-pumps are presented. Gasoline was used as fuel, although the engine is designed to use either gasoline or kerosene and is said to be adapted to the use of the heavier fuels.
Technical Paper

KEROSENE AS A TRACTOR FUEL

1920-01-01
200078
Kerosene has advanced to the front rank as a fuel for the farm tractor within a decade. A heavily preponderating majority of tractors burn kerosene. The history of early oil engines is reviewed and some comparative costs of kerosene and gasoline fuel for tractors, obtained from tests made in January, 1920, are given. Kerosene tractor-engine development is then discussed. The conditions required for complete combustion are the same in principle for both kerosene and gasoline, but in actual practice a wider latitude in providing ideal conditions is permissible for gasoline than for kerosene. The four classes of commercial liquid fuels usable in internal-combustion engines are the alcohols, the gasolines, the common kerosenes and the low-cost heavy-oil fuels. The alcohols rank lowest in heating value per pound of combustible. Under existing economic conditions neither alcohol nor the fuel oils require consideration as available fuels for the tractor.
Technical Paper

TRACTOR WHEELS

1920-01-01
200081
Three distinct types of wheel equipment are best able to meet conditions in the field; the pyramid lug, the spade lug and the angle-iron cleat. The author mentions the merits of each type of lug, discusses slippage and states that no one kind of wheel equipment can be recommended as a universal type.
Technical Paper

FOUR-WHEEL-DRIVE VS CATERPILLAR TRACTOR

1920-01-01
200079
Rear-drive trucks and tractors are popularly accepted as being all that is desired so long as working conditions are not bad enough to prevent their operation. Caterpillars are admitted to be able to go where it is so soft that no other vehicle can navigate, but they are considered as too slow, awkward and expensive to use where the work can be done with wheel-equipped machines. The paper discusses the field of the four-wheel drive. The experience of the Army in motor-transport work is referred to and the application of four-wheel drive to tractors is discussed in some detail.
Technical Paper

TRACTOR WEIGHT AND DRAWBAR PULL

1920-01-01
200080
The best weight for a tractor of given horsepower must be a compromise based upon a mean of the many conditions to be encountered by a given machine or by different machines of the same model. While the weight logically will bear some relation to the drawbar pull, the latter in turn depends upon tractor speed. The next item is weight distribution, which requires the utmost skill of the designer; this is elaborated and diagrams are shown of tractors operating in comparatively firm and in soft ground, ascending a grade and when the drive-wheels are mired. The four-wheel-drive tractor requires a modification of the foregoing analysis and the diagrams are applied to afford a similar analysis for this type. The author's conclusion is that, while careful engineering will make the light-weight tractor of conventional type stable under most conditions, there is a possibility that any future trend toward lighter machines will open the field to other types.
Technical Paper

PENNSYLVANIA SECTION PAPER - ENGINEERING POSSIBILITIES AS INDICATED BY THE PROGRESS OF SCIENCE

1920-01-01
200082
The author views in perspective some facts from a purely scientific standpoint, and then shows their application to problems of the automotive industry. After reviewing the present facilities for measurement and the ability to make measurements of distances both infinitely small and large, as an aid toward a proper conception of the ultimate structure of matter, he applies this scientific knowledge in the direction of a solution of the fuel problem, which is a fundamental one because it involves the limitation of a natural resource. From 1918 and 1919 statistics, the amount of gasoline produced was something like 20 to 25 per cent of the crude oil pumped; 8 to 10 per cent is kerosene and 50 per cent is gas and fuel oil and a residue carrying lubricating oil, paraffin and carbon. Kerosene demand and production are practically fixed quantities; gasoline demands are increasing.
Technical Paper

SOME INLAND WATERWAY TRANSPORTATION PROBLEMS

1920-01-01
200055
The author states that the problems of inland waterway transportation are more a matter of public education than anything else and that, given the waterway on which suitable boats can be navigated, the problems of the vessels themselves and their methods of propulsion are by no means difficult. Referring to the New York State Barge Canal, the thought passes to the problem of motive power for canal barges. The author believes the internal-combustion engine in some form will be found eventually to be the most desirable, although at present little thought is being given to any power other than steam; the author discusses what form of this type of engine would be most suitable. Canal-barge engine requirements are considered at some length and the necessity of positive engine reversibility is emphasized, the conditions affecting this being outlined. The amount of power necessary for a canal barge is discussed, the governing factors being outlined.
Technical Paper

INTAKE-MANIFOLD TEMPERATURES AND FUEL ECONOMY

1920-01-01
200054
Supplementing a “more miles per gallon” movement in 1919, a series of experiments outlined by the S. A. E. Committee on Utilization of Present Fuels was undertaken by the Bureau of Standards, in May, 1920, which included measurements of engine performance under conditions of both steady running and rapid acceleration with different temperatures of the intake charge secured by supplying heated air to the carbureter from a hot-air stove, by maintaining a uniformly heated intake manifold and by using a hot-spot manifold, fuel economy being determined for both part and full-throttle operation. A typical six-cylinder engine was used, having a two-port intake manifold with a minimum length of passage within the cylinder block, an exhaust manifold conveniently located for installing special exhaust openings, rather high peak-load speed and conventional general design.
X