Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Combustion Prediction by a Low-Throughput Model in Modern Diesel Engines

2011-04-12
2011-01-1410
A new predictive zero-dimensional low-throughput combustion model has been applied to both PCCI (Premixed Charge Compression Ignition) and conventional diesel engines to simulate HRR (Heat Release Rate) and in-cylinder pressure traces on the basis of the injection rate. The model enables one to estimate the injection rate profile by means of the injection parameters that are available from the engine ECU (Electronic Control Unit), i.e., SOI (Start Of main Injection), ET (Energizing Time), DT (Dwell Time) and injected fuel quantities, taking the injector NOD (Nozzle Opening Delay) and NCD (Nozzle Closure Delay) into account. An accumulated fuel mass approach has been applied to estimate Qch (released chemical energy), from which the main combustion parameters that are of interest for combustion control in IC engines, such as, SOC (Start Of Combustion), MFB50 (50% of Mass Fraction Burned) have been derived.
Technical Paper

Knock Detection and Estimation Based on Heat Release Strategies

2011-04-12
2011-01-1409
Engine knock has been studied extensively over the years. Its undesired effects on drivability, its potential to damage an engine, and its impact on limiting the compression ratio are the main reasons why it remains a current topic of research. This paper focuses on exploiting the connection between auto-ignition and knock. A new method based on the frequency analysis of the heat release traces is proposed to detect and estimate auto-ignition/knock robustly. Filtering the heat release signal with the appropriate bandwidth is crucial to avoid misdetection. The filter settings used in this paper are found using spectral analysis of the heat release signal. By using the proposed method, it is possible to detect auto-ignition/knock even under the presence of undesired sensor resonance effects and noise from mechanical and electrical sources.
Technical Paper

Real-Time Combustion Phase Optimization of a PFI Gasoline Engine

2011-04-12
2011-01-1415
Combustion control is assuming a crucial role in reducing engine tailpipe emissions and maximizing performance. The number of actuations influencing the combustion is increasing, and, as a consequence, the control parameters calibrations is becoming challenging. One of the most effective factors influencing performance and efficiency is the combustion phasing: gasoline engines Electronic Control Units (ECU) manage the Spark Advance (SA) in order to set the optimal combustion phase. SA optimal values are usually determined by means of calibration procedures carried out on the test bench by changing SA values while monitoring Brake and Indicated Mean Effective Pressure (BMEP, IMEP), Brake Specific Fuel Consumption (BSFC) and pollutant emissions. The effect of SA on combustion is stochastic, due to the cycle-to-cycle variation: the analysis of mean values requires many engine cycles to be significant of the performance obtained with the given control setting.
Technical Paper

Non-Linear Analysis of the Combustion Process in Compression-Ignition Direct Injection Engines of Non-Road Vehicles with the Use of Vibroacoustic Processes in the Point of View of the OBD III Engine Diagnostics

2011-04-12
2011-01-1416
The paper presents a new method for assessment of combustion process correctness taking place in CI engines, based on the expanded vibroacoustic signal analysis. The method uses chosen non-linear, spectrum and time-frequency analyses of the signal. Diagnostics of the correctness of the above main engine process and misfire detection for engines at exploitation conditions with the use of the various methods of the accompanying processes analysis was the aim of the presented analyses. Possibility of the method application to combustion process assessment of the CI engines was verified, algorithms of misfire detection for the each method are described, quantity point estimators of processes and conditions of the OBD diagnostics realization were obtained, methodology of the measurement process, limits of the methods use and their diagnostic accuracy in the point of view of the combustion OBD III engine monitor design are also presented.
Technical Paper

Development of Low Pressure Loop EGR System for Diesel Engines

2011-04-12
2011-01-1413
Low pressure loop (LPL) EGR systems are effective means of simultaneously reducing the NOx emissions and fuel consumption of diesel engines. Further lower emission levels can be achieved by adopting a system that combines LPL EGR with a NOx storage and reduction (NSR) catalyst. However, this combined system has to overcome the issue of combustion fluctuations resulting from changes in the air-fuel ratio due to EGR gas recirculation from either NOx reduction control or diesel particulate filter (DPF) regeneration. The aim of this research was to reduce combustion fluctuations by developing LPL EGR control logic. In order to control the combustion fluctuations caused by LPL EGR, it is necessary to estimate the recirculation time. First, recirculation delay was investigated. It was found that recirculation delay becomes longer when the LPL EGR flow rate or engine speed is low.
Technical Paper

Diagnosis and Control of Advanced Diesel Combustions using Engine Vibration Signal

2011-04-12
2011-01-1414
Increasing demands on emissions reduction and efficiency encouraged a progressive introduction of cleaner combustion concepts. "Advanced" diesel combustions offer a high potential for simultaneous reduction of both NOx and soot within the engine through high inlet charge dilution and mixture homogenization. However, the potential benefits of these combustions in terms of emissions are counterbalanced by their high sensitivity to in-cylinder thermodynamic conditions. This sensitivity makes the engines require closed loop combustion control with real-time information about combustion quality. The parameter widely considered as the most important for the evaluation of the combustion quality in internal combustion engines is the cylinder pressure. However, this kind of measure involves an intrusive approach to the cylinder, expensive sensors and a special mounting process.
Technical Paper

A Study on Shudder in Automatic Transmission Lock-up Clutch Systems and Its Countermeasures

2011-05-17
2011-01-1509
In recent years, automatic transmissions have become widely used in cars. Compared to manual transmissions, automatic transmissions suffer from poor fuel economy. In order to overcome this disadvantage, a lock-up clutch system in the torque converter has been applied. When the rotating speed of the turbine approaches that of the pump, the input shaft is directly connected to the gear train through friction by means of the lock-up clutch. In the process of slipping at the lock-up clutch, frictional vibration referred to as shudder sometimes occurs. When shudder occurs, the power train, as well as the tires and the car seats, vibrates. Therefore, the shudder adversely affects passenger comfort. In the present study, experiments are conducted to analyze the shudder mechanism using a bench test apparatus and an actual vehicle. The characteristics of friction in the lock-up clutch is found to have a negative slope with respect to the relative slip velocity.
Journal Article

Structural Optimization Method and Techniques to Reduce Radiation Noise

2011-05-17
2011-01-1505
A methodology to optimize sound pressure responses of a structure, producing a radiation noise due to structural vibration, is presented. The method involves a finite element analysis module to calculate structural vibration, an optimization module to perform sensitivity analysis and structural optimization, and an acoustic module to compute acoustic transfer vectors. The proposed design system is successfully implemented and is demonstrated in the paper using several example problems.
Technical Paper

CAE Methodology for Optimizing NVH, Functional Reliability, and Mass Reduction at Engine Concept Design Phase

2011-05-17
2011-01-1511
Due to the global economic downturn and higher environmental awareness, the social demands for low cost and fuel efficient vehicles are increasing. At the same time the engine power is increasing and customer expectations of reliability and NVH levels are increasing. To meet all the requirements, engineers are challenged to design light weight parts with higher performance. However, unconsidered mass reduction carries a risk of compromised NVH, Functional Reliability, and other functional demands. In order to resolve this contradiction, it is important to establish a basic structure with minimum necessary mass at the concept design phase, when there are still many degrees of freedom in the design space. Hence, a multi-objective optimization CAE methodology applicable for designing the basic structure of the Engine system was developed and is detailed below.
Technical Paper

Improving Vehicle NVH Behavior via Tuning the Engine Mount Stiffness Using DOE Method

2011-05-17
2011-01-1510
The main purpose of this research is to tune the stiffness of engine mounts of a passenger car in order to reduce the transmitted vibration to driver with regard to the permissible values of natural frequencies of engine using DOE method. Based on the previous experiments, prevalent criteria are introduced by automakers which would lead the designer to optimum values of mountings' stiffness. In this paper we benefit the usage of experimental frequency bands introduced by the NVH authoritative references. To achieve this, we use a mixed Finite element and multi body dynamic modeling. The FEM model of the body front end and engine subframe is developed using Hypermesh. The engine block is modeled as a rigid body attached to the neighbor parts with rubber mounts. The modal natural file of the whole system is created by the aim of MSC/Nastran and exported to the ADAMS/View for further analysis.
Technical Paper

A Note on the Interpretation of Acoustic Impedance in Confined Flows

2011-05-17
2011-01-1515
The use of acoustic impedance to interpret the aeroacoustic behavior of flow ducts is discussed. The test case is a T-junction subjected to various combinations of grazing and bias mean flow. This geometry is not only prone to whistling but its aeroacoustic response varies with the incidence of the acoustic excitation, making it difficult to define a representative impedance. The acoustic impedance should, if correctly defined, have a real part that represents the exchange of energy between the hydrodynamic and acoustic fields and an imaginary part that can be interpreted as the inertia of the orifice. The appropriate definitions of the acoustic impedance and state variables are discussed and compared with experimental data.
Technical Paper

Front Loading NVH Test on the Highly Dynamic Powertrain Test Bed

2011-05-17
2011-01-1512
Advanced powertrain test, which is simulating real road load condition, was performed on the dynamic test bed. This cutting edge system can reproduce real road resistance based upon the vehicle dynamic model and wheel slip model. This wheel slip function is simulating the real behavior of the powertrain wheel as close as possible at each wheel independently. Additionally, low inertia of dynamometer motor themselves is another advantage for this purpose. This test bed is capable of testing all kinds of 2WD and 4WD powertrain configuration regardless of transmission type. Also, vehicle configuration can be mounted and tested on this test bed with small addition of supporting system alternatively. For the application, a four wheel drive powertrain was mounted on the test bed and driveline noise and vibration behavior such as transfer rattling noise and tip in/out shock were reproduced on this test bed.
Journal Article

Direct Aeroacoustic Simulation of Flow Impingement Noise in an Exhaust Opening

2011-05-17
2011-01-1517
Unusual noises during vehicle acceleration often reflect poorly on customer perception of product quality and must be removed in the product development process. Flow simulation can be a valuable tool in identifying root causes of exhaust noises created due to tailpipe openings surrounded by fascia structure. This paper describes a case study where an unsteady Computational Fluid Dynamics (CFD) simulation of the combined flow and acoustic radiation from an exhaust opening through fascia components provided valuable insight into the cause of an annoying flow noise. Simulation results from a coupled thermal/acoustic analysis of detailed tailpipe opening geometry were first validated with off-axis microphone spectra under wide open throttle acceleration. After studying the visualizations of unsteady flow velocity and pressure from the CFD, a problem that had proved difficult to solve by traditional “cut and try” methods was corrected rapidly.
Technical Paper

New Battery Monitoring Unit for HEV/EV Lithium-ion Battery

2011-08-30
2011-01-1740
Lithium-ion batteries have higher energy content and power density than Nickel-metal hydride (NiMH) batteries, but require carefully management for durability and safety. Unlike NiMH batteries, which are controlled on a battery unit basis, each lithium-ion cell generates a different voltage. Typically, the complex controllers required to equalize individual cell voltages are large and costly. We have developed a low-cost battery monitoring unit that performs the same function with a proprietary cell-voltage equalizing system. This new unit also offers various innovative technologies, such as detecting overcharge and over-discharge, fault diagnosis and the measurement of the batteries internal resistance to monitor degradation.
Technical Paper

An Initial Study to Develop Appropriate Warning Sound for a Luxury Vehicle Using an Exterior Sound Simulator

2011-05-17
2011-01-1727
Many electric (EV) and hybrid-electric (HEV) vehicles are designed to operate using only electric propulsion at low road speeds. This has resulted in significantly reduced vehicle noise levels in urban situations. Although this may be viewed by many as a benefit, a risk to safety exists for those who rely on the engine noise to help detect the presence, location and behaviour of a vehicle in their vicinity. In recognition of this, legislation is being introduced globally which will require automotive manufacturers to implement external warning sound systems. A key challenge for premium vehicle manufacturers is the development of a suitable warning sound signature which also conveys the appropriate brand aspirations for the product. A further major difficulty exists when trying to robustly evaluate potential exterior sounds by running large-scale trials in the real world.
Technical Paper

Noise and Vibration Phenomena of On-Line Electric Vehicle®

2011-05-17
2011-01-1726
It is a global research and development trend to introduce electric vehicle into the market in a prompt manner; however, there have been technological issues with batteries, or in general, an energy storage technology in moving vehicles. KAIST, a globally leading university majoring in science and technology in Korea, has been developing a break-through wireless power transfer technology by applying inductive power transfer technology, as demonstrated in a public park in March, 2010, which is referred to as “OLEV- On-line Electric Vehicle.” With the technology, it is possible to drive the electric powertrain and charge its battery simultaneously while the vehicle is in operation on the road. In this paper, a couple of specific noise and vibration phenomena are introduced which have been observed during the development phase of the proto-type of test vehicle.
Technical Paper

Electric Motor Noise in a Lightweight Steel Vehicle

2011-05-17
2011-01-1724
The present work attempts a complete noise and vibration analysis for an electric vehicle at concept stage. The candidate vehicle is the Future Steel Vehicle (FSV), a lightweight steel body with an electric motor developed by WorldAutoSteel [1,2,3]. Measurements were conducted on two small Mitsubishi vehicles that both share the same body, yet one is equipped with an internal combustion engine and the other with an electric motor. The outcome was used as a starting point to identify assets and pitfalls of electric motor noise and draw a set of Noise Vibration and Harshness (NVH) targets for FSV. Compared to a combustion engine, the electric motor shows significantly lower sound pressure levels, except for an isolated high frequency peak heard at high speeds (3500 Hz when the vehicle drives at top speed). The prominence of this peak is lowered by increased use of acoustic absorbent materials in the motor compartment.
Technical Paper

Vibro-Acoustic Source-Path-Receiver approach to Identifying and Troubleshooting in an Agricultural Tractor Mode Coupling Issue

2011-05-17
2011-01-1730
As an agricultural tractor OEM was moving a new tractor model from development into production, an objectionable cab “boom” was identified that was not present in the preproduction pilot -level tractors. The cab boom was identified as a low frequency tone causing an increase of 7 (dBA) over the level in the pilot tractors, which was deemed unacceptable. The process used by the tractor OEM engineering team to address this problem has been widely used and refined in the automotive industry, but it is relatively new in the agricultural/off-road vehicle industry. This paper describes the source-path-receiver approach that led to identifying the exhaust tip as the source and the vibro-acoustic coupling of a windshield structural mode with an acoustic cab cavity mode as the path of the boom event.
Technical Paper

Detection of Hybrid and Quiet Vehicles by Blind and Visually Impaired Pedestrians

2011-05-17
2011-01-1725
The increased popularity of hybrid electric vehicles has created a growing concern for the safety of blind and visually impaired pedestrians. Accident data published by the National Highway Traffic Safety Administration demonstrates a higher incident rate among hybrid electrics vehicles compared to internal combustion engine vehicles during slow speed movement, like when coming to a stop and leaving/entering a parking spot. The typical lower sound output of hybrid electric vehicles, compared to internal combustion engine vehicles, has been reported as the reason for higher incident rates. Previous studies have focused on the overall sound pressure level of vehicles and the ability for blind pedestrians to detect their approach.
Technical Paper

Case Study of Pass-By Noise Development on a Class 8 Truck

2011-05-17
2011-01-1731
Governmental regulations regarding exterior noise emitted by motor vehicles vary throughout the world. A vehicle which is compliant in one market may not be compliant in another market. In this case, a production North American class 8 truck was being prepared for sale overseas. The requirement to meet European Union (EU) pass-by regulations as tested per the EU standard meant development of a production feasible package to substantially reduce noise emissions without changing any fundamental design or operating parameters of the truck. The development testing was done on a chassis dynamometer in a hemi-anechoic chamber without any specific pass-by noise simulation software. Efforts to develop a reasonably accurate correlation from lab to track, use of acoustic beamforming for source localization and package design iterations leading to a final successful package are discussed.
X