Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
The intersection of changing lifestyles and evolving transportation needs finds smart USA well positioned for launch in 2008 during one of the most competitive periods in U.S. automotive history. In a zero sum market with new global entrants competing for single points of share, where quality levels have been redefined and fractions of points separate the best from the challengers, lifestyle awareness, innovation and product positioning become the differentiators. Simply adding features has left some with hefty investments and confused consumers. Bigger is not always better. More is not always desirable. The real opportunity for new entrants to the US market may be defined within niche markets where changing lifestyles allow for the emergence of new segments. Today, smart USA has surfaced as a clear example of right product, right place, right time.
The approach of the proposed technical work: - Brazilian market needs and requirements - The Internet growing up and Telematics, - Potential business to be found out, - Technical approach, - Conclusions
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Many newer commercial vehicles have an event data recorder (EDR) that can record pre-event and post-event speeds. The EDR is incorporated into the engines electronic control module (ECM). In this study, the accuracy of the ECM-reported speed was tested during acceleration, gear shifting and braking at speeds between 16 and 88 km/h (10 to 55mph). The ECM-reported speed was compared to the speed measured by a calibrated optical 5th wheel. The results showed that the accuracy of the ECM-reported speed matched closely during acceleration, cycled to periods of under-reporting the speed during hard braking due to the ABS brake function, briefly under-reporting the speed after letting off the throttle for braking or gear shift and briefly over-reporting the speed near the end of a gear shift phase. This study also looked at calibration factors of the ECM and their effect on the ECM-reported speed.
Countless articles and publications3,4,5 have documented and proven the efficacy, benefits and value of operating within a lean system. Furthermore, there exists common agreement amongst leading organizations successfully implementing a lean system that in order to do so it must take into consideration the entire enterprise, that is, from supplier to customer and everything in between6. One of the core issues this paper addresses is when the optimal time is to train and educate the people who currently have, or will have, influence over the ‘enterprise’.
Lockheed Martin has revealed its concept for a new crewed lunar lander: a single stage, fully reusable system that incorporates flight-proven technologies and systems from the NASA Orion spacecraft. In its initial configuration, the lander would deliver a crew of four and 2,000 pounds of cargo to the Moon’s surface for up to two weeks.
Collins Aerospace, a subsidiary of United Technologies Corporation (UTC), has laid out its plans for what is calling “The Grid” – an 25,000-square-foot advanced electric power systems laboratory for designing and testing next-generation, more-electric aircraft technologies for commercial, military, and business aviation.
The use of microprocessors for the implementation of control functions in aircraft electric systems has become a reality. This paper presents a brief survey of these systems along with a typical system block diagram. A description of the diagram highlights the advantages of microprocessor systems over existing noncomputerized control schemes. The second half of the paper discusses the adaptability of more advanced microprocessor systems in the next generation of aircraft electric systems. These powerful new computers will allow digital control and protection of single unit and paralleled generating and starting systems, as well as providing even more effective built-in-test.
Fuel economy can be part of a business case for a fleet making the decision to buy new HD hybrid drivetrain technologies. Chassis dynamometer tests using SAE Recommended Practice J2711 on a bus equipped with an Allison EP SYSTEM ™ hybrid system and operated on standard bus driving cycles have produced impressive gains of over 60%. Preliminary urban bus field tests, on the other hand, have shown lower fuel economy gains. The difference can be attributed, in part, to the use of accessories - most importantly air conditioning - which are parasitic loads on the vehicle. In this paper the characteristics of driving cycles are studied to determine those factors which have the strongest influence on fuel economy for hybrids. The data show that the number of stopping events in a route or cycle is a strong influence as is the average vehicle speed. Energy analysis will show the relationship of fuel economy benefit and battery energy within a driving cycle.
The “middle man” in the construction machinery business is the dealer who sells and services the products designed and built by the engineers and scientists of the industry. Quality is a foremost concern of the dealer and second, only to quality, is the need for cost control.
The Network Vehicle is the Delphi Automotive Systems' vision for the future convergence of the communications infrastructure, computers, and the automobile. It features many advanced functions such as: satellite video, Internet access, virtual navigation, remote vehicle diagnostics and control, games, mobile office, automotive web site, and customized real-time stock quotes and sports scores. These features are enabled by an integrated planar antenna that is capable of multiple satellite reception, a client-server network architecture, and unique human-vehicle-interfaces. The software application is written in Java, using API's (Application Programming Interfaces) to reduce the complexity and cost of the source code.