Refine Your Search

Topic

Search Results

Standard

Data Management

2012-04-01
HISTORICAL
GEIA859A
Data is information (e.g., concepts, thoughts, and opinions) that have been recorded in a form that is convenient to move or process. Data may represent tables of values of various types (numbers, characters, and so on). Data can also take more complex forms such as engineering drawings and other documents, software, pictures, maps, sound, and animation. For the purpose of this standard, Table 1 lists three broad types of data, indicates how each is used, and provides examples of each. Data management, from the perspective of this standard, consists of the disciplined processes and systems that plan for, acquire, and provide stewardship for product and product-related business data, consistent with requirements, throughout the product and data life cycles. Thus, this standard primarily addresses product data and the business data required for collaboration from the team level or extended through the trading partner level during product acquisition and sustainment.
Standard

Performance Standard for Aerospace and High Performance Electronic Systems Containing Lead-free Solder

2012-03-01
HISTORICAL
GEIASTD0005_1A
This standard defines the objectives of, and requirements for, documenting processes that assure customers and regulatory agencies that ADHP electronic systems containing Pb-free solder, piece parts, and PBs will satisfy the applicable requirements for performance, reliability, airworthiness, safety, and certifiability throughout the specified life of performance. It is intended to communicate requirements for a Pb-free Control Plan (LFCP), hereinafter referred to as the Plan, and to assist the Plan Owners in the development of their own Plans. The Plan documents the Plan Owner’s processes that assure their customers, and all other stakeholders that the Plan Owner’s products will continue to meet their requirements, given the risks stated in the Introduction. This standard does not contain detailed descriptions of the processes to be documented but lists high-level requirements for such processes, and areas of concern to the ADHP industries that must be addressed by the processes.
Standard

Derating of Electronic Components

2011-08-01
CURRENT
GEIASTD0008
This Standard specifies the minimum derating requirements for using electronic components in moderately severe environments. These environments are assumed to include Airborne Inhabited Cargo (AIC), Airborne Inhabited Fighter (AIF), Ground Mobile (GM), and Naval Sheltered (NS) environments specified in MIL-HDBK-217. This Standard is intended to supersede the derating limits contained in Defense Standardization Program Office (DSPO) Standardization Directive SD-18, Naval Standard TE000-AB-GTP-010, and Air Force ESD-TR-85-148. It is intended that a future revision of this Standard will include additional requirements for derating for other environments (e.g. Airborne Uninhabited Cargo). Since this Standard specifies the minimum derating requirements, (sub)contractors may derate in excess of these requirements.
Standard

Configuration Management Standard

2011-04-01
HISTORICAL
EIA649B
This standard defines five CM functions and their underlying principles. The functions are detailed in Section 5. The principles, highlighted in text boxes, are designed to individually identify the essence of the related CM function, and can be used to collectively create a checklist of criteria to evaluate a CM program. In describing each CM function and its principles, this standard utilizes neutral Configuration Management terminology, while also providing equivalent terms, that have historically been used in various product environments (see Table 2). There is no intent to express preference for any particular set of terminology. Similarly, this standard uses a neutral set of names for the phases of a product’s life cycle, which are generic enough to be easily mapped to the myriad of different life cycle models in use. Table 1 illustrates some of the aliases for each phase name and identifies characteristics that apply in each one.
Standard

Standard Best Practices for System Safety Program Development and Execution

2008-10-01
HISTORICAL
GEIASTD0010
This document outlines a standard practice for conducting system safety. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk must be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk must be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk must consider total life cycle cost in any decision. This document is intended for use as one of the elements of project solicitation for complex systems requiring a systematic evaluation of safety hazards and mitigating measures. The Managing authority may identify, in the solicitation and system specification, specific system safety engineering requirements to be met by the Developer.
Standard

Reliability Program Standard for Systems Design, Development, and Manufacturing

2008-08-01
HISTORICAL
GEIASTD0009
This standard requires the developers and customer/user’s working as a team to plan and implement a reliability program that provides systems/products that satisfy the user’s requirements and expectations. The user’s requirements and needs are expressed in the form of the following four reliability objectives: The developer shall solicit, investigate, analyze, understand and agree to the user’s requirements and product needs. The developer, working with the customer and user, shall include the activities necessary to ensure that the user’s requirements and product needs are fully understood and defined, so that a comprehensive design specification and Reliability Program Plan can be generated. The developer shall use well-defined reliability- and systems-engineering processes to develop, design, and verify that the system/product meets the user’s documented reliability requirements and needs.
Standard

Requirements for Using Solder Dip to Replace the Finish on Electronic Piece Parts

2008-07-01
HISTORICAL
GEIASTD0006
This standard defines the requirements for fully replacing undesirable surface finishes using solder dip. Requirements for qualifying and testing the refinished piece parts are also included. This standard covers the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes. This dipping is different from dipping to within some distance of the body for the purposes of solderability; solder dipping for purposes other than full replacement of pure tin and other Pb-free tin alloy finishes are beyond the scope of this document. It covers process and testing requirements for robotic and semi-automatic dipping process but does not cover purely manual dipping processes, due to the lack of understanding of the appropriate requirements for hand-dipping for tin whisker mitigation at this time. This standard does not apply to piece-part manufacturers who build piece parts with a hot solder dip finish.
Standard

Implementation Guide for Common Data Schema for Complex Systems

2007-07-01
CURRENT
GEIAHB927
This section establishes modeling conventions and guidelines to be followed during the development of the GEIA-STD-927 top level schema. The following is within the scope of this document: Modeling rules, conventions and guidelines for the GEIA-STD-927 top level schema. The following are outside the scope of this document: An introduction to information modeling; An introduction to the EXPRESS modeling language.
Standard

Program Management/Systems Engineering Guidelines for Managing the Transition to Lead-Free Electronics

2006-06-01
HISTORICAL
GEIAHB0005_1
This handbook is designed to assist program management and/or systems engineering management in managing the transition to lead-free (Pb-free) electronics to assure product reliability and performance. Programs may inadvertently introduce Pb-free elements (including piece part finish, printed wiring board finish, or assembly solder) if careful coordination between buyer and supplier is not exercised. For example, piece part manufacturers may not always change part numbers to identify Pb-free finishes, especially if the previous tin-lead (Sn/Pb)-finished piece part has been discontinued. Detailed examination of piece parts and documents at receiving inspection while crucial, may not be sufficient to identify Pb-free piece parts. Note: Pb-free technology can impact any program regardless of whether the program itself is exempt or bound by environmental regulations.
Standard

GUIDANCE FOR THE TRANSITION TO LEAD-FREE SOLDERING, MAINTENANCE, AND REPAIR

2006-03-15
CURRENT
ARINC671
This document provides guidance for the use of international standards for the maintenance of lead-free electronic equipment. The purpose is to assist manufacturers, maintenance facilities, and operators to define lead-free soldering requirements and to minimize the set of lead-free solders, processes, and practices to gain consistency across the industry.
Standard

Implementation Guide for Data Management

2006-01-01
CURRENT
GEIAHB859
As an integral part of the evolution to ANSI/GEIA-859 and the new environment, data management ensures that appropriate information support is available. Data requirements are established that ensure that data are properly timed and accessible, and provide the necessary visibility. The integrity of the data must be ensured regardless of their physical location. The DM process, implemented with rapidly maturing technologies, makes information available sooner and facilitates information sharing. It controls the digital format and the procedures necessary to exchange, index, store, and distribute or provide access to data.
Standard

Implementation Guide for Configuration Management

2005-10-01
HISTORICAL
GEIAHB649
This handbook provides guidance about the use of CM and about CM's interface with other management systems and procedures. The paragraph numbers in this handbook map directly to the paragraph numbers in ANSI/EIA-649. It is applicable to the support of projects throughout all phases of a product's life cycle. Generic CM examples are included which may be tailored, taking into account the complexity and nature of the work and the product. It is applicable to the support of projects throughout all phases of a products life cycle. Generic CM examples are included and may be tailored to suit the complexity and nature of the work and the product. This handbook establishes a common framework for generic product life cycle CM. It addresses tailored implementation based on differences that may exist in organization policies and procedures, in the phase of the product life cycle, in the acquisition method, in the project size and complexity, and in the system requirements and development.
X