Refine Your Search

Topic

Search Results

Book

Aerospace Standards Index - 2024

2024-02-12
This valuable resource lists all Aerospace Standards (AS), Aerospace Recommended Practices (ARP), Aerospace Information Reports (AIR), and Aerospace Resource Documents (ARD) published by SAE. Each listing includes title, subject, document number, key words, new and revised documents, and DODISS-adopted documents. AMS Index - Now Available!
Standard

Logistics Product Data Summaries Handbook

2023-08-03
CURRENT
TAHB0007_1A
SAE TA-HB-0007-1A is an integral part of the following suite of documents, which are meant to be used together: SAE TA-STD-0017A, Product Support Analysis, SAE GEIA-STD-0007C, Logistics Product Data, SAE GEIA-HB-0007B, Logistics Product Data Handbook, and SAE TA-HB-0007-1A. MIL-HDBK-502A, Product Support Analysis provides additional guidance and instruction applicable to United States DoD programs. SAE TA-STD-0017A Product Support Analysis is a standard which prescribes a set of analysis activities for designing support and supporting the design of a product. MIL-HDBK-502A provides DoD users with implementation guidance for SAE TA-STD-0017A. The results of the analysis are Logistics Product Data. SAE GEIA-HB-0007B is a companion handbook to SAE GEIA-STD-0007C.
Standard

Standard for Developing a Lead-Free Control Plan to Manage the Risks of Lead-Free Solders and Finishes in Aerospace, Defense, and High-Performance Soldered Electronic Products

2023-08-01
CURRENT
GEIASTD0005_1B
This technical report identifies the requirements for an LFCP for ADHP soldered electronic products built fully or partially with Pb-free materials and assembly processes. An LFCP documents the specific Pb-free materials and assembly processes used to assure customers their ADHP soldered electronic products will meet the applicable reliability requirements of the customer. This standard specifically addresses LFCPs for: a Pb-free components and mixed assembly: Products originally designed and qualified with SnPb solder and assembly processes that incorporate components with Pb-free termination finishes and/or Pb-free BGAs, i.e., assembling Pb-free parts using eutectic/near-eutectic SnPb processes (also known as mixed metallurgy). b COTS products: COTS products likely built with Pb-free materials and assembly processes. c Pb-free design and assembly: Products designed and qualified with Pb-free solder and assembly processes.
Standard

Long Term Storage of Electronic Devices

2022-09-16
WIP
GEIASTD0003B
This document provides an industry standard for Long Term Storage (LTS) of electronic devices by drawing from the best long term storage practices currently known. LTS is defined as any device storage for more than 12 months but typically allows for much longer (years). While intended to address the storage of unpackaged semiconductors and packaged electronic devices, nothing in this standard precludes the storage of other items under the storage levels defined herein. This standard is not intended to address built-in failure mechanisms (e.g., tin whiskers, plating diffusion, and intermetallics) that would take place regardless of storage conditions
Standard

Data Management

2022-08-09
CURRENT
GEIA859B
Data is information that has been recorded in a form or format convenient to move or process. It is important to distinguish between data and the format. The format is a structured way to record information, such as engineering drawings and other documents, software, pictures, maps, sound, and animation. Some formats are open source, others proprietary. Regardless of the format, there are three broad types of data. Table 1 lists these types of data and provides examples. DM, from the perspective of this standard, consists of the disciplined processes and systems utilized to plan for, acquire, and provide management and oversight for product and product-related business data, consistent with requirements, throughout the product and data life cycles. Thus, this standard primarily addresses product data and the business data required for stakeholder collaboration extending through the supply chain during product acquisition and sustainment life cycle.
Standard

Performance Testing for Aerospace and High Performance Electronic Interconnects Containing Pb-free Solder and Finishes

2021-11-05
WIP
GEIASTD0005_3B

This document defines: (1) A default method for those companies that require a pre-defined approach and (2) A protocol for those companies that wish to develop their own test methods.

The default method is intended for use by electronic equipment manufacturers, repair facilities, or programs which, for a variety of reasons, may be unable to develop methods specific to their own products and applications. It is to be used when little or no other information is available to define, conduct, and interpret results from reliability, qualification, or other tests for electronic equipment containing Pb-free solder. The default method is intended to be conservative, i.e., it is biased toward minimizing the risk to users of AHP electronic equipment.

Standard

Requirements for Using Robotic Hot Solder Dip to Replace the Finish on Electronic Piece Parts

2021-10-26
CURRENT
GEIASTD0006C
This standard defines the requirements for fully replacing undesirable surface finishes using robotic hot solder dip. Requirements for qualifying and testing the refinished piece parts are also included. This standard covers the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes with the intent of subsequent assembly with SnPb solder. This dipping is different from dipping to within some distance of the body for the purposes of solderability; solder dipping for purposes other than full replacement of pure tin and Pb-free tin alloy finishes are beyond the scope of this document. It covers process and testing requirements for robotic dipping process and does not cover semi-automatic or purely manual dipping processes. This standard does not apply to piece-part manufacturers who build piece parts with a hot solder dip finish.
Standard

Implementation Guide for Common Data Schema for Complex Systems

2020-10-28
WIP
GEIAHB927A
The purpose of this handbook is to provide the data modeler with the modeling conventions, philosophy and guidelines used during development of the GEIA-STD-927 schema; and the integration process used to integrate existing best-in-class standard data models into the GEIA-STD-927 schema. Most importantly, the handbook provides tailoring guidelines for the data modeler to use in applying the GEIA-STD-927 schema and mapping tables to a practical application for an existing program. The Handbook is organized into four sections: Data Modeling Guidelines, Data Model Usage Guide, Integration Procedure, and Schema Tailoring Guidelines
Standard

Risk Mitigation for Pb-Free Solders Used Internally to Parts

2020-10-19
CURRENT
ARP6537
This document provides risk mitigation for Pb-free solders used internal to parts used in Aerospace and Defense applications. It will include mitigations applicable to encapsulated and cavity devices as the needs arise in industry. Currently this revision only addresses devices with encapsulation or underfill. Mitigations for open cavity devices are still being discussed, and will be addressed in future revisions. Microbumps with Thermal Compression Bonding (TCB) are not addressed by the mitigations in this document. The use of Pb-free microbumps with TCB are considered out of scope at this time. It is expected that this document will be primarily used by Control Levels 3 and 2C (as defined in GEIA-STD-0005-2 for programs that do not allow use of Pb-free tin or only allow its use on an exception basis). It may be used by other levels, or by applications not using GEIA-STD-0005-2.
Standard

Reliability Program Standard for Systems Design, Development, and Manufacturing

2020-05-27
CURRENT
GEIASTD0009A
This standard requires the developers and customer/users working as a team to plan and implement a reliability program that provides systems/products that satisfy the user’s requirements and expectations. The user’s requirements and needs are expressed in the form of the following four reliability objectives: The developer shall solicit, investigate, analyze, understand and agree to the user’s requirements and product needs. The developer, working with the customer and user, shall include the activities necessary to ensure that the user’s requirements and product needs are fully understood and defined, so that a comprehensive design specification and Reliability Program Plan can be generated. The developer shall use well-defined reliability- and systems-engineering processes to develop, design, and verify that the system/product meets the user’s documented reliability requirements and needs.
Standard

Common Data Schema for Complex Systems

2020-03-23
WIP
GEIASTD927C
GEIA-STD-927 specifies the data concepts to be exchanged to share product information pertaining to a complex system from the viewpoints of multiple disciplines. It supports the exchange of data across the entire life cycle for the product from the concept stage through disposal.
Standard

649 Handbook

2020-02-13
WIP
GEIAHB649B
This handbook is intended to assist the user to understand the ANSI/EIA-649B standard principles and functions for Configuration Management (CM) and how to plan and implement effective CM. It provides CM implementation guidance for all users (CM professionals and practitioners within the commercial and industry communities, DoD, military service commands, and government activities (e.g., National Aeronautics and Space Administration (NASA), North Atlantic Treaty Organization (NATO)) with a variety of techniques and examples. Information about interfacing with other management systems and processes are included to ensure the principles and functions are applied in each phase of the life cycle for all product categories.
Standard

Logistics Product Data

2019-11-06
CURRENT
GEIASTD0007C
SAE GEIA-STD-0007C defines logistics product data generated during the requirement definition and design of an industry or government system, end item, or product. It makes use of the Extensible Markup Language (XML) through the use of entities and attributes that comprise logistics product data and their definitions. The standard is designed to provide users with a uniform set of data tags for all or portions of logistics product data. The standard can be applied to any industry or government product, system or equipment acquisition program, major modification program, and applicable research and development projects. This standard is for use by both industry and government activities. As used in this standard, the requiring authority is generally the customer and the customer can be a government or industry activity. The performing activity may be either a industry or government activity.
Standard

Reliability Program Handbook

2019-05-03
CURRENT
TS100-2
This Handbook provides “how to” guidance to industry and government for the reliability Activities and Methods contained in GEIASTD0009 for developing reliable products and systems, successfully demonstrating them during test and evaluation, and sustaining them throughout the system/product life cycle. GEIASTD0009 requires the developers and customer/users working as a team to plan and implement a reliability program that provides systems/products that satisfy the user’s requirements and expectations using a systems engineering approach. The four Objectives of GEIASTD0009 are listed below: Objective 1: Understand customer/user requirements and constraints. The team (developer, customer, and user) includes the Activities necessary to ensure that the user’s requirements and product needs are fully understood and defined, so that a comprehensive design specification and Reliability program plan are generated. Objective 2: Design and redesign for reliability.
Standard

Reliability Program Handbook

2019-05-03
CURRENT
TAHB0009A
This Handbook provides “how to” guidance to industry and government for the reliability Activities and Methods contained in GEIASTD0009 for developing reliable products and systems, successfully demonstrating them during test and evaluation, and sustaining them throughout the system/product life cycle. GEIASTD0009 requires the developers and customer/users working as a team to plan and implement a reliability program that provides systems/products that satisfy the user’s requirements and expectations using a systems engineering approach. The four Objectives of GEIASTD0009 are listed below: Objective 1: Understand customer/user requirements and constraints. The team (developer, customer, and user) includes the Activities necessary to ensure that the user’s requirements and product needs are fully understood and defined, so that a comprehensive design specification and Reliability program plan are generated. Objective 2: Design and redesign for reliability.
Standard

Requirements for Using Robotic Hot Solder Dip to Replace the Finish on Electronic Piece Parts

2019-04-01
HISTORICAL
GEIASTD0006B
This standard defines the requirements for fully replacing undesirable surface finishes using robotic hot solder dip. Requirements for qualifying and testing the refinished piece parts are also included. This standard covers the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes with the intent of subsequent assembly with SnPb solder. This dipping is different from dipping to within some distance of the body for the purposes of solderability; solder dipping for purposes other than full replacement of pure tin and other Pb-free tin alloy finishes are beyond the scope of this document. It covers process and testing requirements for robotic dipping process and does not cover semi-automatic or purely manual dipping processes. This standard does not apply to piece-part manufacturers who build piece parts with a hot solder dip finish.
Standard

Configuration Management Standard

2019-02-07
CURRENT
EIA649C
This standard defines five CM functions and their underlying principles. The functions are detailed in Section 5. The principles, highlighted in text boxes, are designed to individually identify the essence of the related CM function and can be used to collectively create a checklist of “best practice” criteria to evaluate a CM program. The CM principles defined in this standard apply equally to internally focused enterprise information, processes, and supporting systems (i.e., Enterprise CM - policy driven, supporting the internal goals needed to achieve an efficient, effective and lean enterprise), as well as to the working relationships supported by the enterprise (i.e., Acquirer/Supplier CM - contracted relationship to support external trusted interaction with suppliers).
Standard

Standard Best Practices for System Safety Program Development and Execution

2018-11-19
WIP
GEIASTD0010B
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.
Standard

Standard Best Practices for System Safety Program Development and Execution

2018-10-18
CURRENT
GEIASTD0010A
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.
X