Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Binder Jet Additive Manufacturing (BJAM) Process

2020-11-19
CURRENT
AMS7022
This specification establishes process controls for the repeatable production of sintered parts by binder jet additive manufacturing (BJAM). It is primarily intended to be used to manufacture metallic or ceramic aerospace parts, but usage is not limited to such applications.
Training / Education

Additive Manufacturing Bundle

Anytime
Integrating Additive Manufacturing with Traditional Manufacturing "Integrating Additive Manufacturing with Traditional Manufacturing" discusses the factors manufacturers should consider when adding an additive manufacturing (AM) component to a traditional manufacturing operation, including cost, logistics, and best uses of AM with traditional manufacturing, among other concerns.
Book

Additive Manufacturing for Designers: A Primer

2019-02-15
Additive Manufacturing, also known as AM or 3D printing, is a class of manufacturing processes that create objects by shaping material layer by layer. ...However, underneath the hype surrounding this technology is a world of nuance and constraints as well as highly strategic applications. Additive Manufacturing for Designers: A Primer, written by Dr. Amy Elliott from Oak Ridge National Laboratory and Dr. ...Waters from North Carolina A&T State University discusses the topics needed for a holistic understanding of the many micro and macro components of the world of 3D printing. Additive Manufacturing for Designers: A Primer takes the reader on a journey beginning with important aspects of AM part design and process dependence, including resolution and tolerance issues of interest to any manufacturer.
Book

Studies into Additive Manufacturing for In-Space Manufacturing

2016-08-11
Studies into Additive Manufacturing for In-Space Manufacturing is a series of interconnected papers that explore: Lessons learned in processing of recycled thermoplastic filaments The criticality of process control on the print process The effects of orientation angles and print parameters on mechanical behavior Microstructural analysis Case studies of tools included in the spacecraft's toolbox ...Additive manufacturing (AM) for space exploration has become a growing opportunity as long-range space missions evolve.
White Paper

Studies into Additive Manufacturing for In-Space Manufacturing

2017-06-26
WP-0001
NASA has embarked on an ambitious program to integrate additive manufacturing techniques and to develop processes for the microgravity environment. The most recent example of this program is the successful launch and deployment of the first 3D printer on the International Space Station. ...In this one-year effort, students were required to meet a series of milestones to design, manufacture, and test their ideas in close cooperation with members of the NASA Exploration Augmentation Module (EAM) concept team.The participants in this project were tasked with thinking of new solutions using AM that would simultaneously be recyclable with minimal loss in mechanical properties but also have the capacity for high mechanical properties.
Standard

Titanium Alloy Preforms from Plasma Arc Directed Energy Deposition Additive Manufacturing on Substrate Ti-6Al-4V Stress Relieved

2019-01-31
CURRENT
AMS7004
This specification covers preforms fabricated up through 5.5 inches (140 mm) inclusive in deposition width thickness (see 8.2.5) using a Plasma Arc Directed Energy Deposition (PA-DED) additive manufacturing process on a Ti-6Al-4V substrate that are subjected to post-deposition stress relief heat treatment. ...This is a wire fed additive manufacturing process. If required by the CEO, preforms may require subsequent machining to meet requirements for their intended final part application.
Book

Materials Technology Gaps in Metal Additive Manufacturing

2018-04-24
Metal additive manufacturing (MAM) is an exciting emergent technology that offers the possibility of democratizing metal manufacturing worldwide. ..../ Materials Technology Gaps in Metal Additive Manufacturing introduces the reader to various opportunities and relationships in the study of material technologies involved in metal-based additive manufacturing of aerospace and automotive parts. ..../ Materials Technology Gaps in Metal Additive Manufacturing introduces the reader to various opportunities and relationships in the study of material technologies involved in metal-based additive manufacturing of aerospace and automotive parts. Everything starts and ends with the material feedstock, and the intermediate processes that affect a particular metal.
Technical Paper

Construction of a CubeSat Using Additive Manufacturing

2011-10-18
2011-01-2568
This paper examines the use of additive manufacturing and the composite SLS material Windform XT to build a 2U CubeSat with an integrated Micro-Electro-Mechanical System (MEMS) propulsion for space flight. ...The flight of this satellite is intended to examine and test the use of additive manufacturing utilizing Windform XT to produced CubeSat's, as well as certifying a warm gas propulsion subsystems with a magnetic stabilization for CubeSat orbital altitude adjustment. ...The RAMPART project uses additive manufacturing techniques to build the satellite structures, propellant tanks, printed circuit board cages, solar panel frames, antenna deployment mechanisms, etc. at a fraction of the time of current methods.
Technical Paper

Topology Optimization of Landing Gear for Additive Manufacturing

2020-09-25
2020-28-0389
In the pioneering sectors of design and development, industries are looking for computer integrated solutions for product development; especially in aerospace industries where the demands for reduction in the development cycles and prototyping iterations. Generative design and topology optimization are the recent tools for achieving the desired design solutions. Topology optimization aims to find an ideal structural configuration within the given design domain with various constraints, objectives, and boundary conditions. In this study, topology optimization is used as a design tool in the development phase of a component. An efficient methodology is developed based on topology optimization for regeneration of a tertiary components. The topology optimization approach used in this research is divided into three main stages: modelling, optimization and regeneration.
Book

Additive Manufacturing of Aerospace Composite Structures: Fabrication and Reliability

2017-05-20
Additive Manufacturing of Aerospace Composite Structures: Fabrication and Reliability introduces the reader to the current state of technologies involved in processing and design of polymer-reinforced fiber composites using additive manufacturing's automated fiber placement methods, through ten seminal SAE International papers. ...Additive Manufacturing of Aerospace Composite Structures: Fabrication and Reliability introduces the reader to the current state of technologies involved in processing and design of polymer-reinforced fiber composites using additive manufacturing's automated fiber placement methods, through ten seminal SAE International papers. ...Such an environment makes mistakes difficult to solve and, should redesign be required, obtaining reliable information is hard to piece together. Additive Manufacturing of Aerospace Composite Structures: Fabrication and Reliability approaches the question of quality in these structures from a hands-on, solution-driven perspective.
Technical Paper

The Application of Additive Manufacturing to the 2018 SAE Aero Design Challenge

2019-03-19
2019-01-1328
Results show that the use of innovate manufacturing methods such as additive manufacturing and hot wire foam cutting helped to increase prototyping and testing efficiency, and enabled quick production of an organically shaped, high performing RC aircraft. ...This project focuses on the application of polymer additive manufacturing to the 2018 SAE Aero Design Regular Class competition for North Carolina A&T State’s 2017/2018 senior project team. ...The wide use of additive manufacturing and hot wire foam cutting for this aircraft design has allowed for accurate and efficient component production, as well as increased design complexity compared to traditional manufacturing methods seen at competition.
X