Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cybersecurity in the Context of Fail-Operational Systems

2024-04-09
2024-01-2808
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
Technical Paper

Deep Learning Based Automotive Requirements Analysis

2023-04-11
2023-01-0864
Automotive system functionalities spread over a wide range of sub-domains ranging from non-driving related components to complex autonomous driving related components. The requirements to design and develop these components span across software, hardware, firmware, etc. elements. The successful development of these components to achieve the needs from the stockholders requires accurate understanding and traceability of the requirements of these component systems. The high-level customer requirements transformation into low level granularity requires an efficient requirement engineer. The manual understanding of the customer requirements from the requirement documents are influenced by the context and the knowledge gap of the requirement engineer in understanding and transforming the requirements.
Journal Article

Design Approach for Secure Networks to Introduce Data Analytics within the Aircraft Cabin

2019-09-16
2019-01-1853
In the past, aircraft network design did not demand for information security considerations. The aircraft systems were simple, obscure, proprietary and, most importantly for security, the systems have been either physically isolated or they have been connected by directed communication links. The union of the aircraft systems thus formed a federated network. These properties are in sharp contrast with today’s system designs, which rest upon platform-based solutions with shared resources being interconnected by a massively meshed and shared communication network. The resulting connectivity and the high number of interfaces require an in-depth security analysis as the systems also provide functions that are required for the safe operation of the aircraft. This network design evolution, however, resulted in an iterative and continuous adaption of existing network solutions as these have not been developed from scratch.
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Research Report

Impact of Electric Vehicle Charging on Grid Energy Buffering

2022-09-26
EPR2022022
Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid.
Technical Paper

Integrating Fuzz Testing into a CI Pipeline for Automotive Systems

2022-03-29
2022-01-0117
With the rapid development of connected and autonomous vehicles, more sophisticated automotive systems running large portions of software and implementing a variety of communication interfaces are being developed. The ever-expanding codebase increases the risk for software vulnerabilities, while at the same time the large number of communication interfaces make the systems more susceptible to be targeted by attackers. As such, it is of utmost importance for automotive organizations to identify potential vulnerabilities early and continuously in the development lifecycle in an automated manner. In this paper, we suggest a practical approach for integrating fuzz testing into a Continuous Integration (CI) pipeline for automotive systems. As a first step, we have performed a Threat Analysis and Risk Assessment (TARA) of a general E/E architecture to identify high-risk interfaces and functions.
Technical Paper

Intelligent Vehicle Monitoring for Safety and Security

2019-04-02
2019-01-0129
The caveat to these additional capabilities is issues like cybersecurity, complexity, etc. This paper is an exploration into FuSa and CAVs and will present a systematic approach to understand challenges and propose potential framework, Intelligent Vehicle Monitoring for Safety and Security (IVMSS) to handle faults/malfunctions in CAVs, and specifically autonomous systems.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Technical Paper

Requirements for the Automated Generation of Attack Trees to Support Automotive Cybersecurity Assurance

2022-03-29
2022-01-0124
Although ISO/SAE 21434 recommends the development of an assurance case for cybersecurity, the precise nature of a cybersecurity case is not explicitly defined within the standard. ...In the case of cybersecurity, this problem is exacerbated by the increasing complexity of vehicular onboard systems, their inherent obscurity due to their heterogenous architecture, emergent behaviors, and the disparate motivations and resources of potential threat agents.
Technical Paper

Research on CAN Network Security Aspects and Intrusion Detection Design

2017-09-23
2017-01-2007
With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
Technical Paper

Research on the Development Path and Policy Recommendations of Vehicle Infrastructure Cooperation

2022-12-22
2022-01-7065
By looking into the vehicle-infrastructure cooperation (VIC) which is oriented towards intelligent, networked and integrated development, this paper analyzes and proposes the essence and development direction of Intelligent Vehicle Infrastructure Cooperation Systems (I-VICS). With an in-depth analysis of technologies of core importance to VIC and influence factors that constrain VIC development as a whole, the paper comes up with a technological route for VIC, and identifies a direction for vehicle-infrastructure cooperative development that progresses from primary to intermediate cooperation, then to advanced cooperation, and finally to full-fledged cooperation. Policy recommendations aiming at strengthening top-level design, building an integrated vehicle-infrastructure-cloud platform, expediting independence of key techs, building robust standards and regulations for VIC, enhancing workforce development as well as greater efforts at market promotion are put forward.
Technical Paper

Secure Vehicular Communication Using Blockchain Technology

2020-04-14
2020-01-0722
Also, all the existing methods for vehicular communication rely on a centralized server which itself invite massive cyber-security threats. These threats and challenges can be addressed by using the Blockchain (BC) technology, where each transaction is logged in a decentralized immutable BC ledger.
Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
X