Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

VENDOR COMPONENT PROGRAM DATA FILE INTERFACE FOR OEM ASSEMBLY OPERATIONS

1997-02-01
HISTORICAL
J2286_199702
This interface document SAE J2286 revises the requirements for file formats as described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2214. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939. The requirements of SAE J2286 supersede the requirements defined by SAE J1924.
Technical Paper

Vehicle E/E Architecture and Key Technologies Enabling Software-Defined Vehicle

2024-04-09
2024-01-2035
This paper gives a definition of the SDV concept, provides views from different aspects, discusses the progress in vehicle E/E architecture, especially zone-based architecture with centralized computation, and various technologies including High-Performance Computing (HPC) platform, standardized vehicle software architecture, advanced onboard communication, Over-The-Air (OTA) update, and cybersecurity etc. that collectively enable the realization of SDV.
Standard

Vendor Component Program Data File Interface for OEM Assembly Operations

2010-05-03
HISTORICAL
J2286_201005
This interface document SAE J2286 revises the requirements for file formats as were originally described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2461. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939, ISO 15765 or ISO 14229. The requirements of SAE J2286 supersede the requirements defined by SAE J1924.
Journal Article

Vulnerability of FlexRay and Countermeasures

2019-05-23
Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Journal Article

Wireless Security in Vehicular Ad Hoc Networks: A Survey

2022-08-17
Abstract Vehicular communications face unique security issues in wireless communications. While new vehicles are equipped with a large set of communication technologies, product life cycles are long and software updates are not widespread. The result is a host of outdated and unpatched technologies being used on the street. This has especially severe security impacts because autonomous vehicles are pushing into the market, which will rely, at least partly, on the integrity of the provided information. We provide an overview of the currently deployed communication systems and their security weaknesses and features to collect and compare widely used security mechanisms. In this survey, we focus on technologies that work in an ad hoc manner. This includes Long-Term Evolution mode 4 (LTE-PC5), Wireless Access in Vehicular Environments (WAVE), Intelligent Transportation Systems at 5 Gigahertz (ITS-G5), and Bluetooth.
Event

Workshops - Program - 2025 Government Industry Meeting

2024-10-14
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
Journal Article

uACPC: Client-Initiated Privacy-Preserving Activation Codes for Pseudonym Certificates Model

2020-07-27
Abstract With the adoption of Vehicle-to-everything (V2X) technology, security and privacy of vehicles are paramount. To avoid tracking while preserving vehicle/driver’s privacy, modern vehicular public key infrastructure provision vehicles with multiple short-term pseudonym certificates. However, provisioning a large number of pseudonym certificates can lead to an enormous growth of Certificate Revocation Lists (CRLs) during its revocation process. One possible approach to avoid such CRL growth is by relying on activation code (AC)-based solutions. In such solutions, the vehicles are provisioned with batches of encrypted certificates, which are decrypted periodically via the ACs (broadcasted by the back-end system). When the system detects a revoked vehicle, it simply does not broadcast the respective vehicle’s AC. As a result, revoked vehicles do not receive their respective AC and are prevented from decrypting their certificates.
X