Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Integrated Safety and Security Development in the Automotive Domain

2017-03-28
2017-01-1661
The recently released SAE J3061 guidebook for cyber-physical vehicle systems provides high-level principles for automotive organizations for identifying and assessing cybersecurity threats and for designing cybersecurity aware systems in close relation to the ISO 26262 standard for the functional safety of road vehicles. ...., infotainment, car-2-car or car-2-infrastructure communication) as well as new advances toward advanced driver assistance systems (ADAS) or even autonomous driving functions make cybersecurity another key factor to be taken into account by vehicle suppliers and manufacturers. ...Although these can capitalize on experiences from many other domains, they still have to face several unique challenges when gearing up for specific cybersecurity challenges. A key challenge is related to the increasing interconnection of automotive systems with networks (such as Car2X).
Technical Paper

Cybersecurity Testing and Validation

2017-03-28
2017-01-1655
We also consider the necessary scope and depth of cybersecurity testing and suggest examples of how this can be related to cybersecurity requirements, goals and integrity levels, as determined by the threat analysis and risk assessment. ...An essential part of an effective cybersecurity engineering process is testing the implementation of a system for vulnerabilities and validating the effectiveness of countermeasures. ...The SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems provides a recommended framework which organizations can use to implement a cybersecurity engineering process, which includes activities such as integration and testing, penetration testing and verification/validation of cybersecurity requirements at the hardware, software and system levels.
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

2016-09-27
2016-01-8142
Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1948
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Technical Paper

Introducing Attribute-Based Access Control to AUTOSAR

2016-04-05
2016-01-0069
Cyber security concerns in the automotive industry have been constantly increasing as automobiles are more computerized and networked. AUTOSAR is the standard architecture for automotive software development, addressing various aspects including security. The current version of AUTOSAR is concerned with only cryptography-based security for secure authentication at the communication level. However, there has been an increasing need for authorization security to control access on software resources such as data and services in the automobile. In this paper, we introduce attribute-based access control (ABAC) to AUTOSAR to address authorization in automotive software.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases.
Technical Paper

UAS Behaviour and Consistency Monitoring System for Countering Cyber Security Threats

2014-09-16
2014-01-2131
Upon their arrival, Unmanned Autonomous Systems (UAS) brought with them many benefits for those involved in a military campaign. They can use such systems to reconnoiter dangerous areas, provide 24-hr aerial security surveillance for force protection purposes or even attack enemy targets all the while avoiding friendly human losses in the process. Unfortunately, these platforms also carry the inherent risk of being built on innately vulnerable cybernetic systems. From software which can be tampered with to either steal data, damage or even outright steal the aircraft, to the data networks used for communications which can be jammed or even eavesdropped on to gain access to sensible information. All this has the potential to turn the benefits of UAS into liabilities and although the last decade has seen great advances in the development of protection and countermeasures against the described threats and beyond the risk still endures.
Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
Journal Article

Threat Analysis and Risk Assessment in Automotive Cyber Security

2013-04-08
2013-01-1415
The process of hazard analysis and risk assessment (H&R or HARA) is well-established in standards and methods for functional safety, such as the automotive functional safety standard ISO 26262. Considering the parallel discipline of cyber security, it is necessary to establish an analogous process of threat analysis and risk assessment (T&R) in order to identify potential security attacks and the risk associated with these attacks if they were successful. While functional safety H&R processes could be used for threat analysis, these methods need extension and adaptation to the cyber security domain. This paper describes how such a method has been developed based on the approach described in ISO 26262 and the related MISRA Safety Analysis Guidelines. In particular key differences are described in the understanding of the severity of a security attack, and the factors that contribute to the probability of a successful attack.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

EncryptionS Role in Vehicle Information Security

1998-10-19
98C044
A broad range of information is being delivered to and used within modern vehicles. Information-based applications are becoming more highly integrated into the automobile. Security services are necessary to provide appropriate protection for this information. Encryption, digital signature, and hash functionalities enable information security services such as confidentiality, authentication, integrity and non-repudiation. However, the consumer of in-vehicle information services will not accept security services that introduce any inconvenience to their activities. This paper will discuss various security service methods and security management systems and propose methods to integrate these services acceptably into vehicle-based applications.
X