Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Secure Vehicular Communication Using Blockchain Technology

2020-04-14
2020-01-0722
Also, all the existing methods for vehicular communication rely on a centralized server which itself invite massive cyber-security threats. These threats and challenges can be addressed by using the Blockchain (BC) technology, where each transaction is logged in a decentralized immutable BC ledger.
Research Report

Unsettled Issues in Remote Operation for On-road Driving Automation

2021-12-15
EPR2021028
On-road vehicles equipped with driving automation features—where a human might not be needed for operation on-board—are entering the mainstream public space. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human remotely assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire vehicle-network-human now needs to work together safely, effectively, and practically. Unsettled Issues in Remote Operation for On-road Driving Automation highlights technical questions (e.g., network latency, bandwidth, cyber security) and human aspects (e.g., workload, attentiveness, situational awareness) of remote operation and introduces evolving solutions.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

Attacking Ground Vehicles with Ransomware: Watch the Horizon

2022-03-29
2022-01-0358
Ransomware is not a new method of malware infection. This historically had been experienced in the enterprise in nearly every industry. This has been especially problematic in the medical and manufacturing fields. As the attackers saturate the specifically targeted industries, the attackers will expand their target industries. One of these which has not been significantly explored by the ransomware groups are the embedded systems and automobile environment. This set of targets is massive and provides for a vast attack potential. While this has not experienced this attack methodology at length, the research and efforts are creeping towards this as a natural extension of the business. The research focusses on the history of ransomware, uses in the enterprise, possible attack vectors with ground vehicles, and defenses to be explored and implemented to secure automobiles, fleets, and the industries.
Technical Paper

Research on CAN Network Security Aspects and Intrusion Detection Design

2017-09-23
2017-01-2007
With the rapid development of vehicle intelligent and networking technology, the IT security of automotive systems becomes an important area of research. In addition to the basic vehicle control, intelligent advanced driver assistance systems, infotainment systems will all exchange data with in-vehicle network. Unfortunately, current communication network protocols, including Controller Area Network (CAN), FlexRay, MOST, and LIN have no security services, such as authentication or encryption, etc. Therefore, the vehicle are unprotected against malicious attacks. Since CAN bus is actually the most widely used field bus for in-vehicle communications in current automobiles, the security aspects of CAN bus is focused on. Based on the analysis of the current research status of CAN bus network security, this paper summarizes the CAN bus potential security vulnerabilities and the attack means.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Journal Article

A Novel Assessment and Administration Method of Autonomous Vehicle

2020-04-14
2020-01-0708
As a promising strategic industry group that is rapidly evolving around the world, autonomous vehicle is entering a critical phase of commercialization from demonstration to end markets. The global automotive industry and governments are facing new common topics and challenges brought by autonomous vehicle, such as how to test, assess, and administrate the autonomous vehicle to ensure their safe running in real traffic situations and proper interactions with other road users. Starting from the facts that the way to autonomous driving is the process of a robot or a machine taking over driving tasks from a human. This paper summarizes the main characteristics of autonomous vehicle which are different from traditional one, then demonstrates the limitations of the existing certification mechanism and related testing methods when applied to autonomous vehicle.
Technical Paper

Development and Research of Environment Perception Technology in Intelligent Networked Transportation System

2020-12-30
2020-01-5152
As an important part of intelligent driving vehicles and intelligent networked transportation systems, environmental perception technology can provide important decision-making basis for the overall planning of intelligent driving vehicles and transportation systems. This paper reviews the current research on environment perception technology in the current intelligent networked transportation system, and analyzes four key research directions and related progress of environmental sensing technologies, including single sensor device, high-precision map, multi-sensor information fusion and vehicle-road collaboration. On the basis of analyzing and summarizing existing related research, this article elaborates the development trend and key directions of future environmental perception technology, including the integration of deep learning, vehicle-road integration, information security and multi-dimensional perception technology related development directions.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Selftrust - A Practical Approach for Trust Establishment

2020-04-14
2020-01-0720
In recent years, with increase in external connectivity (V2X, telematics, mobile projection, BYOD) the automobile is becoming a target of cyberattacks and intrusions. Any such intrusion reduces customer trust in connected cars and negatively impacts brand image (like the recent Jeep Cherokee hack). To protect against intrusion, several mechanisms are available. These range from a simple secure CAN to a specialized symbiote defense software. A few systems (e.g. V2X) implement detection of an intrusion (defined as a misbehaving entity). However, most of the mechanisms require a system-wide change which adds to the cost and negatively impacts the performance. In this paper, we are proposing a practical and scalable approach to intrusion detection. Some benefits of our approach include use of existing security mechanisms such as TrustZone® and watermarking with little or no impact on cost and performance. In addition, our approach is scalable and does not require any system-wide changes.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Technical Paper

UAS Behaviour and Consistency Monitoring System for Countering Cyber Security Threats

2014-09-16
2014-01-2131
Upon their arrival, Unmanned Autonomous Systems (UAS) brought with them many benefits for those involved in a military campaign. They can use such systems to reconnoiter dangerous areas, provide 24-hr aerial security surveillance for force protection purposes or even attack enemy targets all the while avoiding friendly human losses in the process. Unfortunately, these platforms also carry the inherent risk of being built on innately vulnerable cybernetic systems. From software which can be tampered with to either steal data, damage or even outright steal the aircraft, to the data networks used for communications which can be jammed or even eavesdropped on to gain access to sensible information. All this has the potential to turn the benefits of UAS into liabilities and although the last decade has seen great advances in the development of protection and countermeasures against the described threats and beyond the risk still endures.
Technical Paper

Service Analysis of Autonomous Driving

2020-12-30
2020-01-5194
Autonomous driving represents the ultimate goal of future automobile development. As a collaborative application that integrates vehicles, road infrastructure, network and cloud, autonomous driving business requires a high-degree dynamic cooperation among multiple resources such as data, computing and communications that are distributed throughout the system. In order to meet the anticipated high demand for resources and performance requirements of autonomous driving, and to ensure the safety and comfort of the vehicle users and pedestrians, a top concern of autonomous driving is to understand the system requirements for resources and conduct an in-depth analysis of the autonomous driving business. In this context, this paper presents a comprehensive analysis of the typical business for autonomous driving and establishes an analysis model for five common capabilities, i.e. collection, transmission, intelligent computing, human-machine interaction (HMI), and security.
Technical Paper

Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
X