Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

UAS Behaviour and Consistency Monitoring System for Countering Cyber Security Threats

2014-09-16
2014-01-2131
Upon their arrival, Unmanned Autonomous Systems (UAS) brought with them many benefits for those involved in a military campaign. They can use such systems to reconnoiter dangerous areas, provide 24-hr aerial security surveillance for force protection purposes or even attack enemy targets all the while avoiding friendly human losses in the process. Unfortunately, these platforms also carry the inherent risk of being built on innately vulnerable cybernetic systems. From software which can be tampered with to either steal data, damage or even outright steal the aircraft, to the data networks used for communications which can be jammed or even eavesdropped on to gain access to sensible information. All this has the potential to turn the benefits of UAS into liabilities and although the last decade has seen great advances in the development of protection and countermeasures against the described threats and beyond the risk still endures.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

Selftrust - A Practical Approach for Trust Establishment

2020-04-14
2020-01-0720
In recent years, with increase in external connectivity (V2X, telematics, mobile projection, BYOD) the automobile is becoming a target of cyberattacks and intrusions. Any such intrusion reduces customer trust in connected cars and negatively impacts brand image (like the recent Jeep Cherokee hack). To protect against intrusion, several mechanisms are available. These range from a simple secure CAN to a specialized symbiote defense software. A few systems (e.g. V2X) implement detection of an intrusion (defined as a misbehaving entity). However, most of the mechanisms require a system-wide change which adds to the cost and negatively impacts the performance. In this paper, we are proposing a practical and scalable approach to intrusion detection. Some benefits of our approach include use of existing security mechanisms such as TrustZone® and watermarking with little or no impact on cost and performance. In addition, our approach is scalable and does not require any system-wide changes.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Test Method for the SAE J3138 Automotive Cyber Security Standard

2020-04-14
2020-01-0142
This paper will provide an Overview of Automotive Cyber Security Standards related to the Vehicle OBD-II Data Link. The OBD-II Connector Attack Tree is described with respect to the SAE J3138 requirements for Intrusive vs. non-Intrusive Services. A proposed test method for SAE J3138 is described including hardware and software scripting. Finally, example test results are reviewed and compared with a potential threat boundary.
Technical Paper

Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
Technical Paper

Service Analysis of Autonomous Driving

2020-12-30
2020-01-5194
Autonomous driving represents the ultimate goal of future automobile development. As a collaborative application that integrates vehicles, road infrastructure, network and cloud, autonomous driving business requires a high-degree dynamic cooperation among multiple resources such as data, computing and communications that are distributed throughout the system. In order to meet the anticipated high demand for resources and performance requirements of autonomous driving, and to ensure the safety and comfort of the vehicle users and pedestrians, a top concern of autonomous driving is to understand the system requirements for resources and conduct an in-depth analysis of the autonomous driving business. In this context, this paper presents a comprehensive analysis of the typical business for autonomous driving and establishes an analysis model for five common capabilities, i.e. collection, transmission, intelligent computing, human-machine interaction (HMI), and security.
Technical Paper

Review on CAN Bus Protocol: Attacks, Difficulties, and Potential Solutions

2023-04-11
2023-01-0926
The new generation vehicles these days are managed by networked controllers. A large portion of the networks is planned with more security which has recently roused researchers to exhibit various attacks against the system. This paper talks about the liabilities of the Controller Area Network (CAN) inside In-vehicle communication protocol and a few potentials that could take due advantage of it. Moreover, this paper presents a few security measures proposed in the present examination status to defeat the attacks. In any case, the fundamental objective of this paper is to feature a comprehensive methodology known as Intrusion Detection System (IDS), which has been a significant device in getting network data in systems over many years. To the best of our insight, there is no recorded writing on a through outline of IDS execution explicitly in the CAN transport network system.
Research Report

Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles

2021-09-13
EPR2021019
Modern automobiles collect around 25 gigabytes of data per hour and autonomous vehicles are expected to generate more than 100 times that number. In comparison, the Apollo Guidance Computer assisting in the moon launches had only a 32-kilobtye hard disk. Without question, the breadth of in-vehicle data has opened new possibilities and challenges. The potential for accessing this data has led many entrepreneurs to claim that data is more valuable than even the vehicle itself. These intrepid data-miners seek to explore business opportunities in predictive maintenance, pay-as-you-drive features, and infrastructure services. Yet, the use of data comes with inherent challenges: accessibility, ownership, security, and privacy. Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles examines some of the pressing questions on the minds of both industry and consumers. Who owns the data and how can it be used?
Technical Paper

Research on the Development Path and Policy Recommendations of Vehicle Infrastructure Cooperation

2022-12-22
2022-01-7065
By looking into the vehicle-infrastructure cooperation (VIC) which is oriented towards intelligent, networked and integrated development, this paper analyzes and proposes the essence and development direction of Intelligent Vehicle Infrastructure Cooperation Systems (I-VICS). With an in-depth analysis of technologies of core importance to VIC and influence factors that constrain VIC development as a whole, the paper comes up with a technological route for VIC, and identifies a direction for vehicle-infrastructure cooperative development that progresses from primary to intermediate cooperation, then to advanced cooperation, and finally to full-fledged cooperation. Policy recommendations aiming at strengthening top-level design, building an integrated vehicle-infrastructure-cloud platform, expediting independence of key techs, building robust standards and regulations for VIC, enhancing workforce development as well as greater efforts at market promotion are put forward.
Technical Paper

Technical Trends of the Intelligent Connected Vehicle and Development Stage Division for Freeway Traffic Control

2020-12-30
2020-01-5134
It is deemed that currently the intelligent connected vehicle (ICV) is in its early stage of development, and it will go through multiple development stages in the future to realize its final goal—autonomous driving. Based on the existing ICV researches, this paper believes that ICV can be used to improve the efficiency and safety of freeway. The current research of ICV has two main directions: one focuses on the traffic flow characteristics of vehicles with different attributes, the other is concerned with using ICV to reduce congestion. From the policies issued by countries around the world and the development plans promoted by major vehicle manufacturers, the future development trends and challenges of ICV are analyzed. ICV must overcome all the shortcomings to achieve its final goal, including insufficient hardware capabilities or excessive cost, and the degree of intelligence that needs to be improved.
Technical Paper

Deep Learning Based Automotive Requirements Analysis

2023-04-11
2023-01-0864
Automotive system functionalities spread over a wide range of sub-domains ranging from non-driving related components to complex autonomous driving related components. The requirements to design and develop these components span across software, hardware, firmware, etc. elements. The successful development of these components to achieve the needs from the stockholders requires accurate understanding and traceability of the requirements of these component systems. The high-level customer requirements transformation into low level granularity requires an efficient requirement engineer. The manual understanding of the customer requirements from the requirement documents are influenced by the context and the knowledge gap of the requirement engineer in understanding and transforming the requirements.
Technical Paper

Challenges in the Regulatory Framework of Automated Driving

2019-01-09
2019-26-0097
Automated Driving (AD) is foreseen to be one of the major social and technological challenges in the coming years. Many manufacturers are developing new models with cutting-edge functionalities, which are not included in the scope of the current regulatory framework. Apart from demonstrating their know-how and expertise about AD, their willingness to sell their AD models in the European market is accelerating the rule-making system. However, which is the roadmap for the European regulatory framework? Policy makers and regulatory bodies are pushing their boundaries at all levels (national and international) in order to introduce modifications in existing regulations. These regulations will enable the introduction of these new functionalities into the market. Without decreasing the standards of safety and security, the implementation of a clear and harmonized regulatory framework and approval process is extremely needed.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Technical Paper

Case Study for Defining Security Goals and Requirements for Automotive Security Parts Using Threat Modeling

2018-04-03
2018-01-0014
Several external networks like telematics, and SOTA and many in-vehicle networks by gateways and domain controllers have been increasingly introduced. However, these trends may potentially make many critical data opened, attacked and modified by hackers. These days, vehicle security has been significantly required as these vehicle security threats are related to the human life like drivers and pedestrians. Threat modeling is process of secure software development lifecycle which is developed by Microsoft. It is a systematic approach for analyzing the potential threat in software and identifying the security risk associated with software. Through threat modeling, security risk is be mitigated and eliminated. In vehicle software System, one of vulnerability can affect critical problem about safety. An approach from experience and hacking cases is not enough for analyzing the potential threat and preparing new hacking attack.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
X