Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Enabling the Security of Global Time in Software-Defined-Vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384 [2].
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Technical Paper

Contextual Study of Security and Privacy in V2X Communication for Architecture & Networking products

2024-10-17
2024-28-0038
In recent times there has been an upward trend in "Connected Vehicles", which has significantly improved not only the driving experience but also the "ownership of the car". The use of state-of-the-art wireless technologies, such as vehicle-to-everything (V2X) connectivity, is crucial for its dependability and safety. V2X also effectively extends the information flow between the transportation ecosystem pedestrians, public infrastructure (traffic management system) and parking infrastructure, charging and fuel stations, Etc. V2X has a lot of potential to enhance traffic flow, boost traffic safety, and provide drivers and operators with new services. One of the fundamental issues is maintaining trustworthy and quick communication between cars and infrastructure. While establishing stable connectivity, reducing interference, and controlling the fluctuating quality of wireless transmissions, we have to ensure the Security and Privacy of V2I.
X