It delivers details on key subject areas including: SAE International Standard J3061; the cybersecurity guidebook for cyber-physical vehicle systems The differences between automotive and commercial vehicle cybersecurity. Forensics for identifying breaches in cybersecurity. Platooning and fleet implications. ...This book provides a thorough view of cybersecurity to encourage those in the commercial vehicle industry to be fully aware and concerned that their fleet and cargo could be at risk to a cyber-attack. ...It delivers details on key subject areas including: SAE International Standard J3061; the cybersecurity guidebook for cyber-physical vehicle systems The differences between automotive and commercial vehicle cybersecurity.
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Abstract Aircraft cybersecurity efforts have tended to focus at the strategic or tactical levels without a clear connection between the two. ...CSSEP’s process model postulates that security is best achieved by a balance of cybersecurity, cyber resiliency, defensibility, and recoverability and that control is best established by developing security constraints versus attempting to find every vulnerability. ...CSSEP identifies the major functions needed to do effective aircraft cybersecurity and provides a flexible framework as the “missing link” to connect the strategic and tactical levels of aircraft cybersecurity.
And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human workload, attentiveness, and situational awareness also need to be clarified.
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
This chapter delves into the field of multi-agent collaborative perception (MCP) for autonomous driving: an area that remains unresolved. Current single-agent perception systems suffer from limitations, such as occlusion and sparse sensor observation at a far distance. To address this, three unsettled topics have been identified that demand immediate attention. First, it is crucial to establish normative communication protocols to facilitate seamless information sharing among vehicles. Second, collaboration strategies need to be defined, including identifying the need for specific collaboration projects, determining the collaboration partners, defining the content of collaboration, and establishing the integration mechanism. Finally, collecting sufficient data for MCP model training is vital. This includes capturing diverse modal data and labeling various downstream tasks as accurately as possible.
Cybersecurity of high-power charging infrastructure for electric vehicles (EVs) is critical to the safety, reliability, and consumer confidence in this publicly accessible technology. ...Cybersecurity of high-power charging infrastructure for electric vehicles (EVs) is critical to the safety, reliability, and consumer confidence in this publicly accessible technology. Cybersecurity vulnerabilities in high-power EV charging infrastructure may also present risks to broader transportation and energy-infrastructure systems. ...This paper details a methodology used to analyze and prioritize high-consequence events that could result from cybersecurity sabotage to high-power charging infrastructure. The highest prioritized events are evaluated under laboratory conditions for the severity of impact and the complexity of cybersecurity manipulation.
On the other hand, the potential risks associated with CAV deployment related to technical vulnerabilities are safety and cybersecurity issues that may arise from flawed hardware and software. Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...This report also highlights the importance of establishing robust cybersecurity protocols and fostering digital trust in these vehicles to ensure safe and secure deployment in our modern transportation system.
Abstract Connected autonomous vehicles that employ internet connectivity are technologically complex, which makes them vulnerable to cyberattacks. Many cybersecurity researchers, white hat hackers, and black hat hackers have discovered numerous exploitable vulnerabilities in connected vehicles. ...This study expanded the technology acceptance model (TAM) to include cybersecurity and level of trust as determinants of technology acceptance. This study surveyed a diverse sample of 209 licensed US drivers over 18 years old.
This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. ...Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles. ...As the domain geared up for the cybersecurity challenges, they leveraged experiences from many other domains, but must face several unique challenges.
What standardization is needed to ensure that quantum technologies do not pose an unacceptable risk from an automotive cybersecurity perspective? Click here to access the full SAE EDGETM Research Report portfolio.
This exercise confirms the necessity of a more restrictive cybersecurity posture in automotive peripherals with access to critical systems, in particular VDAs, and especially when such peripherals present a wireless interface.
Abstract Trust in the digital data from heavy vehicle event data recorders (HVEDRs) is paramount to using the data in legal contests. Ensuring the trust in the HVEDR data requires an examination of the ways the digital information can be attacked, both purposefully and inadvertently. The goal or objective of an attack on HVEDR data will be to have the data omitted in a case. To this end, we developed an attack tree and establish a model for violating the trust needed for HVEDR data. The attack tree provides context for mitigations and also for functional requirements. A trust model is introduced as well as a discussion on what constitutes forensically sound data. The main contribution of this article is an attack tree-based model of both malicious and accidental events contributing to compromised event data recorder (EDR) data. A comprehensive list of mitigations for HVEDR systems results from this analysis.
Although ISO/SAE 21434 recommends the development of an assurance case for cybersecurity, the precise nature of a cybersecurity case is not explicitly defined within the standard. ...In the case of cybersecurity, this problem is exacerbated by the increasing complexity of vehicular onboard systems, their inherent obscurity due to their heterogenous architecture, emergent behaviors, and the disparate motivations and resources of potential threat agents.
Cybersecurity (CS) is crucial and significantly important in every product that is connected to the network/internet. ...Hence making it very important to guarantee that every single connected device shall have cybersecurity measures implemented to ensure the safety of the entire system. Looking into the forecasted worldwide growth in the electric vehicles (EV’s) segment, CS researchers have recently identified several vulnerabilities that exist in EV’s, electric vehicle supply equipment (EVSE) devices, communications to EVs, and upstream services, such as EVSE vendor cloud services, third party systems, and grid operators. ...Additional processes have been defined in the process reference and assessment model for the CS engineering in order to incorporate the cybersecurity related processes in the ASPICE scope. This paper aims at providing a model & brief overview to establish a correlation between the ASPICE, ISO/SAE 21434 and the ISO 26262 functional safety (FS) standards for development of a secured cybersecurity software with all the considerations that an organization can undertake.